Preface

Parsing (syntactic analysis) is one of the best understood branches of computer science.
Parsers are aready being used extensively in a number of disciplines: in computer sci-
ence (for compiler construction, database interfaces, self-describing data-bases, artifi-
cia intelligence), in linguistics (for text analysis, corpora analysis, machine translation,
textual analysis of biblical texts), in document preparation and conversion, in typeset-
ting chemical formulae and in chromosome recognition, to name a few; they can be
used (and perhaps are) in a far larger number of disciplines. It is therefore surprising
that there is no book which collects the knowledge about parsing and explains it to the
non-specialist. Part of the reason may be that parsing has a name for being “difficult”.
In discussing the Amsterdam Compiler Kit and in teaching compiler construction, it
has, however, been our experience that seemingly difficult parsing techniques can be
explained in simple terms, given the right approach. The present book is the result of
these considerations.

This book does not address a strictly uniform audience. On the contrary, while
writing this book, we have consistently tried to imagine giving a course on the subject
to adiffuse mixture of students and faculty members of assorted faculties, sophisticated
laymen, the avid readers of the science supplement of the large newspapers, etc. Such a
course was never given; a diverse audience like that would be too uncoordinated to
convene at regular intervals, which is why we wrote this book, to be read, studied,
perused or consulted wherever or whenever desired.

Addressing such a varied audience has its own difficulties (and rewards).
Although no explicit math was used, it could not be avoided that an amount of
mathematical thinking should pervade this book. Technical terms pertaining to parsing
have of course been explained in the book, but sometimes a term on the fringe of the
subject has been used without definition. Any reader who has ever attended a lecture on
a non-familiar subject knows the phenomenon. He skips the term, assumes it refers to
something reasonable and hopes it will not recur too often. And then there will be pas-
sages where the reader will think we are elaborating the obvious (this paragraph may
be one such place). The reader may find solace in the fact that he does not have to doo-
dle histime away or stare out of the window until the lecturer progresses.

On the positive side, and that is the main purpose of this enterprise, we hope that
by means of a book with this approach we can reach those who were dimly aware of
the existence and perhaps of the usefulness of parsing but who thought it would forever

12 Preface

be hidden behind phrases like:

P .
Let P beamapping VN - 2(VNEIVT)

and $ ahomomorphism ...

No knowledge of any particular programming language is required. The book con-
tains two or three programs in Pascal, which serve as actualizations only and play a
minor role in the explanation. What is required, though, is an understanding of algo-
rithmic thinking, especially of recursion. Books like Learning to program by Howard
Johnston (Prentice-Hall, 1985) or Programming from first principles by Richard Bornat
(Prentice-Hall 1987) provide an adequate background (but supply more detail than
required). Pascal was chosen because it is about the only programming language more
or less widely available outside computer science environments.

The book features an extensive annotated bibliography. The user of the bibliogra-
phy is expected to be more than casually interested in parsing and to possess already a
reasonable knowledge of it, either through this book or otherwise. The bibliography as
a list serves to open up the more accessible part of the literature on the subject to the
reader; the annotations are in terse technical prose and we hope they will be useful as
stepping stones to reading the actual articles.

On the subject of applications of parsers, this book is vague. Although we suggest
a number of applications in Chapter 1, we lack the expertise to supply details. It is
obvious that musical compositions possess a structure which can largely be described
by a grammar and thus is amenable to parsing, but we shall have to leave it to the
musicologists to implement the idea. It was less obvious to us that behaviour at cor-
porate meetings proceeds according to a grammar, but we are told that this is so and
that it is asubject of socio-psychological research.

Acknowledgements
We thank the people who helped us in writing this book. Marion de Krieger has
retrieved innumerable books and copies of journal articles for us and without her effort
the annotated bibliography would be much further from completeness. Ed Keizer has
patiently restored peace between us and the pictbljegn|psfigjtroff pipeline, on the many
occasions when we abused, overloaded or just plainly misunderstood the latter. Leo
van Moergestel has made the hardware do things for us that it would not do for the
uninitiated. We also thank Erik Baalbergen, Frans Kaashoek, Erik Groeneveld, Gerco
Ballintijn, Jaco Imthorn, and Egon Amada for their critical remarks and contributions.
The rose at the end of Chapter 2 is by Arwen Grune. llana and Lily Grune typed parts
of the text on various occasions.

We thank the Faculteit Wiskunde en Informatica of the Vrije Universiteit for the
use of the equipment.

In awider sense, we extend our thanks to the hundreds of authors who have been
so kind as to invent scores of clever and elegant algorithms and techniques for us to
exhibit. We hope we have named them all in our bibliography.

Dick Grune
Ceriel J.H. Jacobs
Amstelveen/Amsterdam, July 1990; Sept 1998

1

| ntroduction

Parsing is the process of structuring a linear representation in accordance with a given
grammar. This definition has been kept abstract on purpose, to alow as wide an
interpretation as possible. The “linear representation” may be a sentence, a computer
program, a knitting pattern, a sequence of geological strata, a piece of music, actionsin
ritual behaviour, in short any linear sequence in which the preceding elements in some
way restrict’ the next element. For some of the examples the grammar is well-known,
for some it is an object of research and for some our notion of a grammar is only just
beginning to take shape.

For each grammar, there are generally an infinite number of linear representations
(“sentences’) that can be structured with it. That is, a finite-size grammar can supply
structure to an infinite number of sentences. This is the main strength of the grammar
paradigm and indeed the main source of the importance of grammars: they summarize
succinctly the structure of an infinite number of objects of a certain class.

There are severa reasons to perform this structuring process called parsing. One
reason derives from the fact that the obtained structure helps us to process the object
further. When we know that a certain segment of a sentence in German is the subject,
that information helps in translating the sentence. Once the structure of a document has
been brought to the surface, it can be converted more easily.

A second is related to the fact that the grammar in a sense represents our under-
standing of the observed sentences. the better a grammar we can give for the move-
ments of bees, the deeper our understanding of them is.

A third lies in the completion of missing information that parsers, and especially
error-repairing parsers, can provide. Given a reasonable grammar of the language, an
error-repairing parser can suggest possible word classes for missing or unknown words
on clay tablets.

T If there is no restriction, the sequence still has a grammar, but this grammar istrivial and unin-
formative.

14 Introduction [Ch.1

1.1 PARSING ASA CRAFT

Parsing is no longer an arcane art; it has not been so since the early 70's when Aho,
Ullman, Knuth and many others put various parsing techniques solidly on their theoret-
ical feet. It need not be a mathematical discipline either; the inner workings of a parser
can be visualized, understood and modified to fit the application, with not much more
than cutting and pasting strings.

There is a considerable difference between a mathematician’s view of the world
and a computer-scientist’s. To a mathematician al structures are static: they have
aways been and will aways be; the only time dependence is that we just haven't
discovered them all yet. The computer scientist is concerned with (and fascinated by)
the continuous creation, combination, separation and destruction of structures. time is
of the essence. In the hands of a mathematician, the Peano axioms create the integers
without reference to time, but if a computer scientist uses them to implement integer
addition, he finds they describe a very slow process, which is why he will be looking
for a more efficient approach. In this respect the computer scientist has more in com-
mon with the physicist and the chemist; like these, he cannot do without a solid basisin
several branches of applied mathematics, but, like these, he is willing (and often virtu-
aly obliged) to take on faith certain theorems handed to him by the mathematician.
Without the rigor of mathematics all science would collapse, but not al inhabitants of a
building need to know all the spars and girders that keep it upright. Factoring off cer-
tain detailed knowledge to specialists reduces the intellectual complexity of a task,
which is one of the things computer science is about.

This is the vein in which this book is written: parsing for anybody who has pars-
ing to do: the compiler writer, the linguist, the data-base interface writer, the geologist
or musicologist who want to test grammatical descriptions of their respective objects of
interest, and so on. We require a good ability to visualize, some programming experi-
ence and the willingness and patience to follow non-trivial examples; there is nothing
better for understanding a kangaroo than seeing it jump. We treat, of course, the popu-
lar parsing techniques, but we will not shun some weird techniques that look as if they
are of theoretical interest only: they often offer new insights and a reader might find an
application for them.

1.2 THE APPROACH USED

This book addresses the reader at at least three different levels. The interested non-
computer scientist can read the book as “the story of grammars and parsing”; he or she
can skip the detailed explanations of the algorithms: each algorithm is first explained in
genera terms. The computer scientist will find much technical detail on awide array of
algorithms. To the expert we offer a systematic bibliography of over 400 entries, which
is intended to cover al articles on parsing that have appeared in the readily available
journals. Each entry is annotated, providing enough material for the reader to decide if
the referred article is worth reading.

No ready-to-run algorithms have been given, except for the general context-free
parser of Chapter 12. The formulation of a parsing algorithm with sufficient precision
to enable a programmer to implement and run it without problems requires a consider-
able supporting mechanism that would be out of place in this book and in our experi-
ence does little to increase one's understanding of the process involved. The popular
methods are given in algorithmic form in most books on compiler construction. The

Sec. 1.2] The approach used 15

less widely used methods are amost always described in detail in the original publica-
tion, for which see Chapter 13.

1.3 OUTLINE OF THE CONTENTS

Since parsing is concerned with sentences and grammars and since grammars are them-
selves fairly complicated objects, ample attention is paid to them in Chapter 2. Chapter
3 discusses the principles behind parsing and gives a classification of parsing methods.
In summary, parsing methods can be classified as top-down or bottom-up and as direc-
tional or non-directional; the directiona methods can be further distinguished into
deterministic and non-deterministic. This scheme dictates the contents of the next few
chapters. In Chapter 4 we treat non-directional methods, including Unger and CYK.
Chapter 5 forms an intermezzo with the treatment of finite-state automata, which are
needed in the subsequent chapters. Chapters 6 through 9 are concerned with directional
methods. Chapter 6 covers non-deterministic directional top-down parsers (recursive
descent, Definite Clause Grammars), Chapter 7 non-deterministic directional bottom-
up parsers (Earley). Deterministic methods are treated in Chapters 8 (top-down: LL in
various forms) and 9 (bottom-up: LR, etc.). A combined deterministic/non-
deterministic method (Tomita) is also described in Chapter 9. That completes the pars-
ing methods per se.

Error handling for a selected number of methods is treated in Chapter 10. The
comparative survey of parsing methods in Chapter 11 summarizes the properties of the
popular and some less popular methods. Chapter 12 contains the full code in Pascal for
a parser that will work for any context-free grammar, to lower the threshold for experi-
menting.

1.4 THE ANNOTATED BIBLIOGRAPHY

The annotated bibliography is presented in Chapter 13 and is an easily accessible sup-
plement of the main body of the book. Rather than listing al publications in alphabetic
order, it is divided into fourteen named sections, each concerned with a particular
aspect of parsing; inside the sections, the publications are listed chronologicaly. An
author index replaces the usual aphabetic list. The section name plus year of publica-
tion, placed in brackets, are used in the text to refer to an author’s work. For instance,
the annotated reference to Earley’s publication of the Earley parser [CF 1970] can be
found in the section CF at the position of the papers of 1970. Since the name of the
first author is printed in bold letters, the actual reference is then easily located.

2

Grammars as a generating device

21 LANGUAGESASINFINITE SETS

In computer science as in everyday parlance, a “grammar” serves to “describe’ a
“language”. If taken on face value, this correspondence, however, is misleading, since
the computer scientist and the naive speaker mean dightly different things by the three
terms. To establish our terminology and to demarcate the universe of discourse, we
shall examine the above terms, starting with the last one.

2.1.1 Language

To the larger part of mankind, language is first and foremost a means of communica-
tion, to be used almost unconsciously, certainly so in the heat of a debate. Communica-
tion is brought about by sending messages, through air vibrations or through written
symbols. Upon a closer look the language messages (* utterances’) fall apart into sen-
tences, which are composed of words, which in turn consist of symbol sequences when
written. Languages can differ on all these three levels of composition. The script can be
dightly different, as between English and Irish, or very different, as between English
and Chinese. Words tend to differ greatly and even in closely related languages people
call un cheval or ein Pferd, that which is known to others as a horse. Differences in
sentence structure are often underestimated; even the closely related Dutch often has an
almost Shakespearean word order: “ Ik geloof je niet”, “I believe you not”, and unrelated
languages readily come up with constructions like the Hungarian “Pénzem van”,
“Money-my is’, where the English say “| have money”.

The computer scientist takes a very abstracted view of all this. Yes, a language
has sentences, and these sentences possess structure; whether they communicate some-
thing or not is not his concern, but information may possibly be derived from their
structure and then it is quite all right to call that information the meaning of the sen-
tence. And yes, sentences consist of words, which he calls tokens, each possibly carry-
ing a piece of information, which is its contribution to the meaning of the whole sen-
tence. But no, words cannot be broken down any further. The computer scientist is not
worried by this. With his love of telescoping solutions and multi-level techniques, he
blithely claims that if words turn out to have structure after all, they are sentences in a
different language, of which the |etters are the tokens.

Sec. 2.1] Languages asinfinite sets 17

The practitioner of formal linguistics, henceforth called the formal-linguist (to dis-
tinguish him from the “formal linguist”, the specification of whom is left to the imagi-
nation of the reader) again takes an abstracted view of this. A language is a “set” of
sentences, and each sentence is a “sequence” of “symbols’; that is al there is: no
meaning, no structure, either a sentence belongs to the language or it does not. The only
property of a symbol is that it has an identity; in any language there are a certain
number of different symbols, the alphabet, and that number must be finite. Just for con-
venience we write these symbols as a,b,c ---, but O, O, 0, --- would do equally
well, as long as there are enough symbols. The word sequence means that the symbols
in each sentence are in a fixed order and we should not shuffle them. The word set
means an unordered collection with al the duplicates removed; a set can be written
down by writing the objects in it, surrounded by curly brackets. All this means that to
the formal-linguist the following is a language: {a, b, ab, ba}, and so is {a, aa, aaa,
aaaa, ---} athough the latter has notational problems that will be solved later. In
accordance with the correspondence that the computer scientist sees between
sentence/word and word/letter, the formal-linguist also calls a sentence a word and he
says that “the word ab isin the language { a, b, ab, ba}”.

Now let’'s consider the implications of these compact but powerful ideas.

To the computer scientist, a language is a probably infinitely large set of sen-
tences, each composed of tokens in such away that it has structure; the tokens and the
structure cooperate to describe the semantics of the sentence, its “meaning” if you will.
Both the structure and the semantics are new, that is, were not present in the formal
model, and it is his responsibility to provide and manipulate them both. To a computer
scientist 3+4*5 is a sentence in the language of “arithmetics on single digits’ (“single
digits’ to avoid having an infinite number of symbols), its structure can be shown, for
instance, by inserting parentheses: (3+(4*5)) and its semantics is probably 23.

To the linguist, whose view of languages, it has to be conceded, is much more
normal than that of either of the above, alanguage is an infinite set of possibly interre-
lated sentences. Each sentence consists, in a structured fashion, of words which have a
meaning in the real world. Structure and words together give the sentence a meaning,
which it communicates. Words, again, possess structure and are composed of |etters;
the letters cooperate with some of the structure to give a meaning to the word. The
heavy emphasis on semantics, the relation with the real world and the integration of the
two levels sentence/word and word/letters are the domain of the linguist. “The circle
spins furiously” is asentence, “ The circle sleepsred” is nonsense.

The formal-linguist holds his views of language because he wants to study the
fundamental properties of languages in their naked beauty; the computer scientist holds
his because he wants a clear, well-understood and unambiguous means of describing
objects in the computer and of communication with the computer, a most exacting
communication partner, quite unlike a human; and the linguist holds his view of
language because it gives him a formal tight grip on a seemingly chaotic and perhaps
infinitely complex object: natural language.

212 Grammars

Everyone who has studied a foreign language knows that a grammar is a book of rules
and examples which describes and teaches the language. Good grammars make a care-
ful distinction between the sentence/word level, which they often call syntax or syn-
taxis, and the word/letter level, which they call grammar. Syntax contains rules like

18 Grammars as a generating device [Ch. 2

“pour queisfollowed by the subjunctive, but parce queis not”; grammar contains rules
like “the plural of an English noun isformed by appending an -s, except when the word
ends in -s, -sh, -0, -ch or -x, in which case -es is appended, or when the word has an
irregular plural.”

We skip the computer scientist’s view of a grammar for the moment and proceed
immediately to the formal-linguist’s one. His view is at the same time very abstract and
quite similar to the above: a grammar is any exact, finite-size, complete description of
the language, i.e., of the set of sentences. This is in fact the school grammar, with the
fuzziness removed. Although it will be clear that this definition has full generality, it
turns out that it is too general, and therefore relatively powerless. It includes descrip-
tions like “the set of sentences that could have been written by Chaucer”; platonically
speaking this defines a set, but we have no way of creating this set or testing whether a
given sentence belongs to this language. This particular example, with its “could have
been” does not worry the formal-linguist, but there are examples closer to his home that
do. “The longest block of consecutive sevens in the decimal expansion of U describes
a language that has at most one word in it (and then that word will consist of sevens
only), and as a definition it is exact, finite-size and complete. One bad thing with it,
however, is that one cannot find this word; suppose one finds a block of one hundred
sevens after billions and billions of digits, there is aways a chance that further on there
is an even longer block. And another bad thing is that one cannot even know if such a
longest block exists at all. It is quite possible that, as one proceeds further and further
up the decimal expansion of 1, one would find longer and longer stretches of sevens,
probably separated by ever-increasing gaps. A comprehensive theory of the decimal
expansion of Ttmight answer these questions, but no such theory exists.

For these and other reasons, the formal-linguists have abandoned their static, pla-
tonic view of agrammar for a more constructive one, that of the generative grammar: a
generative grammar is an exact, fixed-size recipe for constructing the sentences in the
language. This means that, following the recipe, it must be possible to construct each
sentence of the language (in a finite number of actions) and no others. This does not
mean that, given a sentence, the recipe tells us how to construct that particular sentence,
only that it is possible to do so. Such recipes can have several forms, of which some are
more convenient than others.

The computer scientist essentially subscribes to the same view, often with the
additional requirement that the recipe should imply how a sentence can be constructed.

2.1.3 Problems

The above definition of a language as a possibly infinite set of sequences of symbols,

and of a grammar as a finite recipe to generate these sentences, immediately gives rise

to two embarrassing questions:

1. How can finite recipes generate enough infinite sets of sentences?

2. If asentence is just a sequence and has no structure and if the meaning of a sen-
tence derives, among other things, from its structure, how can we assess the mean-
ing of a sentence?

These questions have long and complicated answers, but they do have answers.

We shall first pay some attention to the first question and then devote the main body of

this book to the second.

Sec. 2.1] Languages asinfinite sets 19

2.1.3.1 Infinite setsfrom finite descriptions

In fact there is nothing wrong with getting a single infinite set from a single finite
description: “the set of all positive integers’ is a very finite-size description of a defin-
itely infinite-size set. Still, there is something disquieting about the idea, so we shall
rephrase our question: “Can all languages be described by finite descriptions?’. As the
lead-up already suggests, the answer is “No”, but the proof is far from trivial. It is,
however, very interesting and famous, and it would be a shame not to present at least
an outline of it here.

2.1.3.2 Descriptions can be enumerated

The proof is based on two observations and a trick. The first observation is that
descriptions can be listed and given a number. This is done as follows. First, take all
descriptions of size one, that is, those of only one letter long, and sort them alphabeti-
caly. This is the beginning of our list. Depending on what, exactly, we accept as a
description, there may be zero descriptions of size one, or 27 (al letters + space), or
128 (all ASCII characters) or some such; thisisimmateria to the discussion which fol-
lows.

Second, we take all descriptions of size two, sort them alphabetically to give the
second chunk on the list, and so on for lengths 3, 4 and further. This assigns a position
on the list to each and every description. Our description “the set of al positive
integers’, for instance, is of size 32, not counting the quotation marks. To find its posi-
tion on the list, we have to calculate how many descriptions there are with less than 32
characters, say L. We then have to generate all descriptions of size 32, sort them and
determine the position of our description in it, say P, and add the two numbers L and P.
This will, of course, give a huge number™ but it does ensure that the description is on
thelist, in awell-defined position; see Figure 2.1.

{ descriptions of size 1
{ descriptions of size 2
{ descriptions of size 3

{ descriptions of size 31

P descriptions of size 32
“the set of all positive integers’

Figure 2.1 List of all descriptions of length 32 or less

Two things should be pointed out here. The first is that just listing all descriptions
alphabetically, without reference to their lengths, would not do: there are aready infin-
itely many descriptions starting with an “a” and no description starting with a higher

T Some (computer-assisted) calculations tell us that, under the ASCII-128 assumption, the
number is 248 17168 89636 37891 49073 14874 06454 89259 38844 52556 26245 57755 89193
30291, or roughly 2.5* 1067,

20 Grammars as a generating device [Ch. 2

letter could get a number on the list. The second is that there is no need to actually do
all this. It is just a thought experiment that allows us to examine and draw conclusion
about the behaviour of a system in a situation which we cannot possibly examine physi-
caly.

Also, there will be many nonsensical descriptions on the list; it will turn out that
this is immaterial to the argument. The important thing is that all meaningful descrip-
tions are on the list, and the above argument ensures that.

2.1.3.3 Languages are infinite bit-strings

We know that words (sentences) in alanguage are composed of a finite set of symbols,
this set is caled quite reasonably the alphabet. We will assume that the symbols in the
alphabet are ordered. Then the words in the language can be ordered too. We shall indi-
cate the aphabet by 2.

Now the simplest language that uses alphabet is that which consists of al words
that can be made by combining letters from the alphabet. For the alphabet 2={a, b} we
get the language { , a, b, aa, ab, ba, bb, aaa, - - -}. We shal call this language =", for
reasons to be explained later; for the moment it isjust a name.

The set notation = above started with “ { , a,”, a remarkable construction; the
first word in the language is the empty word, the word consisting of zero a's and zero
b's. There is no reason to exclude it, but, if written down, it may easily get lost, so we
shall write it as € (epsilon), regardless of the alphabet. So, = = {&, a, b, aa, ab, ba, bb,
aaa, - -}.Insome natura languages, forms of the present tense of the verb “to be”
are the empty word, giving rise to sentences of the form “I student”; Russian and
Hebrew are examples of this.

Since the symbols in the aphabet 2 are ordered, we can list the words in the
language X, using the same technique as in the previous section: First all words of size
zero, sorted; then all words of size one, sorted; and so on. This is actually the order
aready used in our set notation for X" .

The language =" has the interesting property that all languages using alphabet =
are subsets of it. That means that, given another possibly less trivial language over Z,
called L, we can go through the list of wordsin =" and put ticks on all words that are in
L. Thiswill cover al wordsinL, since " contains any possible word over .

Suppose our language L is “the set of all words that contain more a's than b’'s’.
L={a, aa, aab, aba, baa, ‘- -}. The beginning of our list, with ticks, will ook as fol-
lows:

€
O a
b
O aa
ab
ba
bb
O aaa
O aab
O aba
abb

Sec. 2.1] Languages asinfinite sets 21

bab
bba
bbb

Given the aphabet with its ordering, the list of blanks and ticks alone is entirely suffi-
cient to identify and describe the language. For convenience we write the blank as a 0
and the tick as a 1 as if they were bits in a computer, and we can now write
L=0101000111010001 - - - (and ¥ =1111111111111111 - -). It should be noted that
this is true for any language, be it a formal language like L, a programming language
like Pascal or a natural language like English. In English, the 1's in the bit-string will
be very scarce, since hardly any arbitrary sequence of words is a good English sentence
(and hardly any arbitrary sequence of letters is a good English word, depending on
whether we address the sentence/word level or the word/letter level).

2.1.3.4 Diagonalization

The previous section attaches the infinite bit-string 0101000111010001... to the
description “the set of all the words that contain more a's than b’s’. In the same vein
we can attach such bit-strings to all descriptions; some descriptions may not yield a
language, in which case we can attach an arbitrary infinite bit-string to it. Since all
descriptions can be put on a single numbered list, we get, for instance, the following
picture:

Description Language
Description #1 000000100...
Description #2 110010001...
Description #3 011011010...
Description #4 110011010...
Description #5 100000011...

Description #6 111011011...

At the left we have all descriptions, at the right all languages they describe. We now
clam that many languages exist that are not on the list of languages above: the above
list is far from complete, although the list of descriptions is complete. We shall prove
this by using the diagonalization process (“ Diagonalverfahren”) of Cantor.

Consider the language C=100110 - - -, which has the property that its n-th bit is
unequal to the n-th bit of the language described by Description #n. The first bit of Cis
a l, because thefirst bit for Description #1 is a O; the second bit of C is a0, because the
second bit for Description #2 is a 1, and so on. C is made by walking the NW to SE
diagonal of the language field and copying the opposites of the bits we meet.

The language C cannot be on the list! It cannot be on line 1, since its first bit
differs (is made to differ, one should say) from that on line 1, and in general it cannot
be on line n, since its n-th bit will differ from that on line n, by definition.

So, in spite of the fact that we have exhaustively listed al possible finite descrip-
tions, we have at least one language that has no description on the list. Moreover, any
broken diagonal yields such a language, where a diagonal is “broken” by replacing a

22 Grammars as a generating device [Ch. 2

section of it as follows,

and so does any multiply-broken diagonal. In fact, for each language on the list, there
are infinitely many languages not on it; this statement is, however, more graphical than
it isexact, and we shall not proveit.

The diagonalization technique is described more formaly in most books on
theoretical computer science; see e.g., Rayward-Smith [Books 1983, pp. 5-6] or Hop-
croft and Ullman [Books 1979, pp 6-9].

2.1.3.5 Conclusions

The above demonstration shows us several things. First, it shows the power of treating
languages as formal objects. Although the above outline clearly needs considerable
amplification and substantiation to qualify as a proof (for one thing it still has to be
clarified why the above explanation, which defines the language C, is not itself on the
list of descriptions), it allows usto obtain insight in properties not otherwise assessable.

Secondly, it shows that we can only describe atiny subset (not even afraction) of
al possible languages: there is an infinity of languages out there, forever beyond our
reach.

Thirdly, we have proved that, although there are infinitely many descriptions and
infinitely many languages, these infinities are not equal to each other and that the latter
is larger than the former. These infinities are called Oy and [0; by Cantor, and the
aboveisjust an adaptation of his proof that o<[;.

2.1.4 Describing alanguage through afinite recipe
A good way to build a set of objects isto start with asmall object and to give rules how
to add to it and construct new objects from it. “Two is an even number and the sum of
two even numbers is again an even number” effectively generates the set of all even
numbers. Formalists will add “...and no other numbers are even”, but we'll skip that.
Suppose we want to generate the set of all enumerations of names, of the type
“Tom, Dick and Harry”, in which all names but the last two are separated by commas.
We will not accept “Tom, Dick, Harry” nor “Tom and Dick and Harry”, but we shall
not object to duplicates: “ Grubb, Grubb and Burrowes’ Tisall right. Although these are
not complete sentences in normal English, we shall still call them sentences since that
iswhat they are in our midget language of name enumerations. A simple-minded recipe
would be:

0. Tomisaname, Dick isaname, Harry isaname;
1. anameisasentence;

t The Hobhbit, by JR.R. Tolkien, Allen and Unwin, 1961, p. 311.

Sec. 2.1] Languages asinfinite sets 23

2. a sentence followed by a comma and a name is again a sentence;
3. beforefinishing, if the sentence endsin “, name”, replace it by
“and name”.

Although this will work for a cooperative reader, there are several things wrong
with it. Clause 3 is especially wrought with trouble. For instance, the sentence does not
realy end in “, name”, it ends in “, Dick” or such, and “name” is just a symbol that
stands for a real name; such symbols cannot occur in area sentence and must in the
end be replaced by areal name as given in clause 0. Likewise, the word “sentence” in
the recipe is a symbol that stands for al the actual sentences. So there are two kinds of
symbols involved here: real symbols, which occur in finished sentences, like “Tom”,
“Dick”, a comma and the word “and”; and there are intermediate symbols, like “sen-
tence” and “name” that cannot occur in a finished sentence. The first kind corresponds
to the words or tokens explained above and the technical term for them isterminal sym-
bols (or terminals for short) while the latter are called non-terminals (a singularly unin-
spired term). To distinguish them, we write terminals in small letters and start non-
terminals with a capital.

To stress the generative character of the recipe, we shall replace“X isaY” by “Y
may be replaced by X”: if “tom” is an instance of a Name, then everywhere we have a
Name we may narrow it down to “tom”. This gives us:

0. Name may be replaced by “tom”
Name may be replaced by “dick”
Name may be replaced by “harry”
1 Sentence may be replaced by Name
2. Sentence may be replaced by Sentence, Name
3 “, Name’ at the end of a Sentence must be replaced by “and Name”
before Name is replaced by any of its replacements
4. asentenceisfinished only when it no longer contains non-terminals
5 we start our replacement procedure with Sentence

Clause 0 through 3 describe replacements, but 4 and 5 are different. Clause 4 is not
specific to this grammar. It is valid generally and is one of the rules of the game.
Clause 5 tells us where to start generating. This name is quite naturally called the start
symbol, and it isrequired for every grammar.

Still clause 3 looks worrisome; most rules have “may be replaced”, but this one
has “must be replaced”, and it refers to the “end of a Sentence”. The rest of the rules
work through replacement, but the problem remains how we can use replacement to
test for the end of a Sentence. This can be solved by adding an end-marker after it. And
if we make the end-marker a non-terminal which cannot be used anywhere except in
the required replacement from “, Name” to “and Name’, we automatically enforce the
restriction that no sentence is finished unless the replacement test has taken place. For
brevity we write - > instead of “may be replaced by”; since terminal and non-terminal
symbols are now identified as technical objects we shall write them in a typewriter-like
typeface. The part before the - > is called the left-hand side, the part after it the right-
hand side. Thisresultsintherecipein Figure 2.2.

Thisis asimple and relatively precise form for arecipe, and the rules are equally
straightforward: start with the start symbol, and keep replacing until there are no non-

24 Grammars as a generating device [Ch. 2

0. Name -> tom
Nane -> dick
Nane -> harry

1. Sentence -> Nane
Sentence -> List End
2. Li st -> Nanme

Li st -> List , Name
3. , Nane End -> and Nane
4. thestart symbol is Sent ence

Figure 2.2 Afinite recipe for generating stringsin thet, d & h language

terminals left.

22 FORMAL GRAMMARS

The above recipe form, based on replacement according to rules, is strong enough to
serve as a basis for formal grammars. Similar forms, often called “rewriting systems’,
have along history among mathematicians, but the specific form of Figure 2.2 was first
studied extensively by Chomsky [Misc 1959]. His analysis has been the foundation for
almost all research and progress in formal languages, parsers and a considerable part of
compiler construction and linguistics.

Since formal languages are a branch of mathematics, work in this field is done in
a specia notation which can be a hurdle to the uninitiated. To allow a small peep into
the formal linguist’s kitchen, we shall give the formal definition of a grammar and then
explain why it describes a grammar like the one in Figure 2.2. The formalism used is
indispensable for correctness proofs, etc., but not for understanding the principles; it is
shown here only to give an impression and, perhaps, to bridge a gap.

Definition 2.1: A generative grammar is a 4-tuple (Vn,VT,R,S) such that (1) Vy
and Vr are finite sets of symbols, (2) VynVt =0, (3) Ris a set of pairs (P,Q) such
that (3a) PO(VNOVr)* and (3b) QO(VyOVy)”, and (4) SOVy.

A 4-tuple is just an object consisting of 4 identifiable parts; they are the non-
terminals, the terminals, the rules and the start symbol, in that order; the above defini-
tion does not tell this, so thisis for the teacher to explain. The set of non-terminals is
named Vy and the set of terminals V. For our grammar we have:

Vy ={Nare, Sent ence, Li st , End}
Vt ={tomdi ck, harry,, ,and}

(note the, in the set of terminal symbols).

The intersection of Vy and V1 (2) must be empty, that is, the non-terminals and
the terminals may not have a symbol in common, which is understandable.

R is the set of al rules (3), and P and Q are the left-hand sides and right-hand
sides, respectively. Each P must consist of sequences of one or more non-terminals
and terminals and each Q must consist of sequences of zero or more non-terminals and
terminals. For our grammar we have:

R={(Nare, t on), (Narre, di ck), (Nane, harry),

Sec. 2.2] Formal grammars 25

(Sent ence, Nane), (Sent ence, Li st End),
(Li st, Nane), (Li st,List , Name), (, Name End,and Nane)}

Note again the two different commas.
The start symbol Smust be an element of Vy, that is, it must be a non-terminal:

S=Sent ence

This concludes our field trip into formal linguistics; the reader can be assured that
there is lots and lots more. A good simple introduction is written by Révész [Books
1985].

2.2.1 Generating sentences from a formal grammar

The grammar in Figure 2.2 is what is known as a phrase structure grammar for our
t,d& h language (often abbreviated to PS grammar). There is a more compact notation,
in which several right-hand sides for one and the same left-hand side are grouped
together and then separated by vertical bars, | . This bar belongs to the formalism, just
as the arrow - > and can be read “or else”. The right-hand sides separated by vertical
bars are also called alternatives. In this more concise form our grammar becomes:

Nane -> tom]| dick | harry
Sentenceg -> Name | List End

List -> Nane | Nanme , List
, Name End -> and Name

WwpNhEo

where the non-terminal with the subscript ¢ is the start symbol. (The subscript ¢ identi-
fies the symbol, not the rule.)

Now let's generate our initial example from this grammar, using replacement
according to the above rules only. We obtain the following successive forms for Sen-
t ence:

Intermediate form Rule used Explanation

Sent ence the start symbol

Li st BEnd Sent ence -> List EBEnd rule 1

Narme , List End List -> Name , List rule 2

Name , Nane , List BEnd List -> Name , List rule 2

Nane , Nane , Nane End List -> Nane rule 2

Narre , Nane and Nanme , Nane End -> and Nane rule3

tom, dick and harry rule O, three times

The intermediate forms are called sentential forms; if a sentential form contains no
non-terminalsit is called a sentence and belongs to the generated language. The transi-
tions from one line to the next are called production steps and the rules are often called
production rules, for obvious reasons.

The production process can be made more visual by drawing connective lines
between corresponding symbols, as shown in Figure 2.3. Such apictureiscalled apro-
duction graph or syntactic graph, because it depicts the syntactic structure (with regard
to the given grammar) of the final sentence. We see that the production graph normally

26 Grammars as a generating device [Ch. 2

Figure 2.3 Production graph for a sentence

fans out downwards, but occasionally we may see starlike constructions, which result
from rewriting a group of symbols.

It is patently impossible to have the grammar generate tom dick, harry,
since any attempt to produce more than one name will drag in an End and the only way
to get rid of it again (and get rid of it we must, since it is a non-terminal) is to have it
absorbed by rule 3, which will produce the and. We see, to our amazement, that we
have succeeded in implementing the notion “must replace” in a system that only uses
“may replace’; looking more closely, we see that we have split “must replace” into
“may replace” and “must not be a non-terminal”.

Apart from our standard example, the grammar will of course also produce many
other sentences; examples are:

harry and tom
harry
tom tom tom and tom

and an infinity of others. A determined and foolhardy attempt to generate the incorrect
form without the and will lead us to sentential forms like:

tom dick, harry End

which are not sentences and to which no production rule applies. Such forms are called
blind alleys. Note that production rules may not be applied in the reverse direction.

Sec. 2.2] Formal grammars 27

2.2.2 Theexpressive power of formal grammars

The main property of a formal grammar is that it has production rules, which may be
used for rewriting part of the sentential form (= sentence under construction) and a
starting symbol which is the mother of all sentential forms. In the production rules we
find non-terminals and terminals; finished sentences contain terminals only. That is
about it: the rest is up to the creativity of the grammar writer and the sentence pro-
ducer.

Thisis aframework of impressive frugality and the question immediately rises: Is
it sufficient? Well, if it isn't, we don’t have anything more expressive. Strange as it
may sound, all other methods known to mankind for generating sets have been proved
to be equivalent to or less powerful than a phrase structure grammar. One obvious
method for generating a set is, of course, to write a program generating it, but it has
been proved that any set that can be generated by a program can be generated by a
phrase structure grammar. There are even more arcane methods, but al of them have
been proved not to be more expressive. On the other hand there is no proof that no such
stronger method can exist. But in view of the fact that many quite different methods al
turn out to halt at the same barrier, it is highly unIikerJr that a stronger method will
ever befound. See, e.g. Révész [Books 1985, pp 100-102].

As a further example of the expressive power we shall give a grammar for the
movements of a Manhattan turtle. A Manhattan turtle moves in a plane and can only
move north, east, south or west in distances of one block. The grammar of Figure 2.4
produces all paths that return to their own starting point.

1 Mveg -> north Mve south | east Mve west | ¢
2. nort h east -> east north

north south -> south north

nort h west -> west north

east north -> north east
east south -> south east

east west -> west east
south north -> north south
sout h east -> east south
sout h west -> west south
west north -> north west

west east -> east west

west south -> south west
Figure 2.4 Grammar for the movements of a Manhattan turtle

Asto rule 2, it should be noted that some authors require at least one of the symbolsin
the left-hand side to be a non-terminal. This restriction can aways be enforced by
adding new non-terminals.

The simple round trip nort h east south west is produced as shown in Fig-
ure 2.5 (names abbreviated to their first letter). Note the empty alternative in rule 1

T Paul Vitdny has pointed out that if scientists call something *highly unlikely” they are till
generaly not willing to bet ayear’s salary on it, double or quit.

28 Grammars as a generating device [Ch. 2

(the €), which results in the dying out of the third Min the above production graph.

Figure 2.5 How the grammar of Figure 2.4 producesaround trip

23 THECHOMSKY HIERARCHY OF GRAMMARS AND LANGUAGES

The grammars from Figures 2.2 and 2.4 are easy to understand and indeed some simple
phrase structure grammars generate very complicated sets. The grammar for any given
set is, however, usualy far from simple. (We say “The grammar for a given set”
although there can be, of course, infinitely many grammars for a set. By the grammar
for a set, we mean any grammar that does the job and is not obviously overly compli-
cated.) Theory says that if a set can be generated at all (for instance, by a program) it
can be generated by a phrase structure grammar, but theory does not say that it will be
easy to do so, or that the grammar will be understandable. In this context it is illustra-
tive to try to write a grammar for those Manhattan turtle paths in which the turtle is
never alowed to the west of its starting point. (Hint: use a specia (non-terminal)
marker for each block the turtle is located to the east of its starting point).

Apart from the intellectual problems phrase structure grammars pose, they also
exhibit fundamental and practical problems. We shall see that no general parsing algo-
rithm for them can exist, and all known special parsing algorithms are either very inef-
ficient or very complex; see Section 3.5.2.

The desire to restrict the unmanageability of phrase structure grammars, while
keeping as much of their generative powers as possible, has led to the Chomsky hierar-
chy of grammars. This hierarchy distinguishes four types of grammars, numbered from
0to 3; it isuseful to include afifth type, called Type 4 here. Type O grammars are the
(unrestricted) phrase structure grammars of which we have already seen examples. The
other types originate from applying more and more restrictions to the allowed form of
the rules in the grammar. Each of these restrictions has far-reaching consequences; the
resulting grammars are gradually easier to understand and to manipulate, but are also
gradually less powerful. Fortunately, these less powerful types are still very useful,
actually more useful even than Type 0. We shal now consider each of the three
remaining typesin turn, followed by atrivial but useful fourth type.

231 Typelgrammars

The characteristic property of a Type O grammar is that it may contain rules that
transform an arbitrary (non-zero) number of symbols into an arbitrary (possibly zero)
number of symbols. Example:

, NE->and N

Sec. 2.3] The Chomsky hierarchy of grammars and languages 29

in which three symbols are replaced by two. By restricting this freedom, we obtain
Type 1 grammars. Strangely enough there are two, intuitively completely different
definitions of Type 1 grammars, which can be proved to be equivalent.

A grammar is Type 1 monotonic if it contains no rules in which the left-hand side
consists of more symbols than the right-hand side. This forbids, for instance, the rule ,
NE->and N

A grammar is Type 1 context-sensitive if all of its rules are context-sensitive. A
rule is context-sensitive if actualy only one (non-terminal) symbol in its left-hand side
gets replaced by other symbols, while we find the others back undamaged and in the
same order in the right-hand side. Example:

Nane Coonma Nane End -> Nane and MNane End
which tells that the rule
Comma -> and

may be applied if the left context is Nane and the right context isName End. The con-
texts themselves are not affected. The replacement must be at least one symbol long;
this means that context-sensitive grammars are always monotonic; see Section 2.6.

Here is a monotonic grammar for our t,d&h example. In writing monotonic gram-
mars one has to be careful never to produce more symbols than will be produced even-
tually. We avoid the need to delete the end-marker by incorporating it into the right-
most name.

Name -> tom| dick | harry
Sentenceg -> MNane | List

List -> EndNane | Name , List
, EndName -> and Name

where EndNane is a single symbol.
And here is a context-sensitive grammar for it.

Name -> tom| dick | harry
Sentenceg -> Nane | List
List -> EndNane
| Name Comma Li st

Comma EndNane -> and EndNane contextis ... EndNane
and EndNane -> and Nane context is and ...
Comma ->

Note that we need an extra non-terminal Conma to be able to produce the terminal and
in the correct context.

Monotonic and context-sensitive grammars are equally powerful: for each
language that can be generated by a monotonic grammar a context-sensitive grammar
exists that generates the same language, and vice versa. They are less powerful than
the Type O grammars, that is, there are languages that can be generated by a Type O
grammar but not by any Type 1. Strangely enough no simple examples of such

30 Grammars as a generating device [Ch. 2

languages are known. Although the difference between Type 0 and Type 1 is funda-
mental and is not just a whim of Mr. Chomsky, grammars for which the difference
matters are too complicated to write down; only their existence can be proved (see e.g.,
Hopcroft and Ullman [Books 1979, pp. 183-184] or Révész [Books 1985, p. 98]).

Of course any Type 1 grammar is also a Type 0 grammar, since the class of Type
1 grammars is obtained from the class of Type O grammars by applying restrictions.
But it would be confusing to call a Type 1 grammar a Type O grammar; it would be like
calling a cat amammal: correct but not informative enough. A grammar is named after
the smallest class (that is, the highest type number) in which it will still fit.

We saw that our t,d& h language, which was first generated by a Type O grammar,
could aso be generated by a Type 1 grammar. We shall see that there isalso a Type 2
and a Type 3 grammar for it, but no Type 4 grammar. We therefore say that the t,d&h
language is Type 3 language, after the most restricted (and simple and amenable) gram-
mar for it. Some corollaries of this are: A Type n language can be generated by a Type
n grammar or anything stronger, but not by a weaker Type n+1 grammar; and: If a
language is generated by a Type n grammar, that does not necessarily mean that there is
no (weaker) Type n+1 grammar for it. The use of a Type O grammar for our t,d&h
language was a serious case of overkill, just for demonstration purposes.

The standard example of a Type 1 language is the set of words that consist of
equal numbersof a’'s, b’sand c’s, in that order:

aa....a bb....b cc....c
N\ o o J

n of them n of them n of them

2.3.1.1 Constructing a Type 1 grammar

For the sake of completeness and to show how one writes a Type 1 grammar if oneis
clever enough, we shall now derive a grammar for this toy language. Starting with the
simplest case, we have the rule

0. S->abc
Having got one instance of S, we may want to prepend more a’s to the beginning; if we
want to remember how many there were, we shall have to append something to the end
as well at the same time, and that cannot be ab or ac. We shall use a yet unknown
symbol Q The following rule pre- and postpends:

1. S->abc | aSQ
If we apply thisrule, for instance, three times, we get the sentential form

aaabcQQ

Now, to get aaabbbccc from this, each Qmust be worth one b and one c, aswas to be
expected, but we cannot just write

Q-> bc

Sec. 2.3] The Chomsky hierarchy of grammars and languages 31

because that would allow b’s after the first ¢. The above rule would, however, be all
right if it were alowed to do replacement only between ab and a c; there, the newly
inserted bc will do no harm:

2. bQ@ -> bbcc

Still, we cannot apply this rule since normally the Qs are to the right of the c; this can
be remedied by allowing aQto hop left over ac:

3. cQ->C
We can now finish our derivation:

aaabcQQ (3timesrule 1)
aaabQ@Q (rule 3)
aaabbccQ (rule 2)
aaabbc (rule 3)
aaabbQc (rule 3)
aaabbbccc (rule 2)

It should be noted that the above derivation only shows that the grammar will produce
the right strings, and the reader will still have to convince himself that it will not gen-
erate other and incorrect strings.

-> abc | asSQ
b -> bbcc
cQ ->

Figure 2.6 Monotonic grammar for a"b"c"

The grammar is summarized in Figure 2.6; since a derivation tree of a3b3c? is
already rather unwieldy, a derivation tree for a?b?c? isgiven in Figure 2.7. The gram-
mar is monotonic and therefore of Type 1; it can be proved that there is no Type 2
grammar for the language.

Figure 2.7 Derivation of a?b?c?

32 Grammars as a generating device [Ch. 2

Type 1 grammars are also called context-sensitive grammars (CS grammars); the
latter name is often used even if the grammar is actually monotonic. There are no stan-
dard initials for monotonic, but MT may do.

2.3.2 Type2grammars

Type 2 grammars are called context-free grammars (CF grammars) and their relation to
context-sensitive grammars is as direct as the name suggests. A context-free grammar
is like a context-sensitive grammar, except that both the left and the right contexts are
required to be absent (empty). As a result, the grammar may contain only rules that
have a single non-terminal on their left-hand side. Sample grammar:

0. Nane -> tom| dick | harry
1. Sentenceg -> Nane | List and Nane
2. List -> Nane, List | Nane

Since there is aways only one symbol on the left-hand side, each node in a pro-
duction graph has the property that whatever it produces is independent of what its
neighbours produce: the productive life of a non-terminal is independent of its context.
Starlike forms as we saw in Figures 2.3, 2.5 or 2.7 cannot occur in a context-free pro-
duction graph, which consequently has a pure tree-form and is called a production tree.
An example is shown in Figure 2.8.

Figure 2.8 Production tree for a context-free grammar

Also, since there is only one symbol on the left-hand side, al right-hand sides for a
given non-terminal can always be collected in one grammar rule (we have already done
that in the above grammar) and then each grammar rule reads like a definition of the
left-hand side:
o A Sentenceisether aName or aLi st followed by and followed by a Nane.
o AList iseither aName followed by a, followed by aLi st, or it isaNane.

In the actual world, many things are defined in terms of other things. Context-free

Sec. 2.3] The Chomsky hierarchy of grammars and languages 33

grammars are avery concise way to formulate such interrelationships. An almost trivial
example is the composition of a book, as given in Figure 2.9.

Bookg -> Preface ChapterSequence Goncl usion
Preface -> "PREFACE' ParagraphSequence
Chapter Sequence -> Chapter | Chapter Chapter Sequence
Chapt er -> "CHAPTER' Nunber ParagraphSequence
Par agr aphSequence -> Paragraph | Paragraph ParagraphSequence
Par agr aph -> Sent enceSequence
Sent enceSequence -> -

Gonclusion -> "QOONCLUSI ON' Par agr aphSequence
Figure2.9 A smple (and incomplete!) grammar of a book

Of course, this is a context-free description of a book, so one can expect it to also gen-
erate alot of good-looking nonsense like

PREFACE

gwer t yui op

CHAPTER V

asdf ghj ki

zxcvbnm .

CHAPTER 1 |

gazwsxedcrfvtgb

yhnuj m kol p

OONCLUSI ON

Al cats say blert when wal ki ng through walls.

but at least the result has the right structure. The document preparation and text mark-
up language SGM LT usesthis approach to control the basic structure of documents.

A shorter but less trivial example is the language of all elevator motions that
return to the same point (a Manhattan turtle restricted to 5th Avenue would make the
same movements)

ZeroMtiong -> up Zeroltion down ZeroMtion
| down ZeroMdtion up ZeroMbtion
| €

(in which we assume that the elevator shaft isinfinitely long; they are, in Manhattan).
If we ignore enough detail we can also recognize an underlying context-free struc-
ture in the sentences of a natural language, for instance, English:

T David Barron, “Why use SGML?", Electronic Publishing, vol. 2, no. 1, p. 3-24, April 1989.
Short introduction to SGML (Standard Generalized Markup Language) and comparison to other
systems. Provides further references.

34 Grammars as a generating device [Ch. 2

Sentenceg -> Subject Verb (bject
Subject -> NounPhrase
(bject -> NounPhrase
NounPhrase -> the QualifiedNoun
QualifiedNoun -> Noun | Adjective QualifiedNoun
Noun -> castle | caterpillar | cats
Adjective -> well-read | white | wistful |

Verb -> admres | bark | criticize |

which produces sentences like:
the well-read cats criticize the wistful caterpillar
Since, however, no context isincorporated, it will equally well produce the incorrect
the cats admres the white well-read castle

For keeping context we could use a phrase structure grammar (for a simpler
language):

Sentenceg -> Noun Nunber Verb
Number -> Singular | Plural
Noun Singular -> castle S ngular | caterpillar S ngular |
Singular Verb -> Singular admres |
Singular -> ¢

Noun Plural -> cats Plural |
Plural Verb -> Pural bark | Plural criticize |
Pural -> ¢

where the markers Si ngul ar and Pl ural control the production of actual English
words. Still this grammar allows the cats to bark.... For a better way to handle context,
see the section on van Wijngaarden grammars (2.4.1).

The bulk of examples of CF grammars originate from programming languages.
Sentences in these languages (that is, programs) have to be processed automatically
(that is, by acompiler) and it was soon recognized (around 1958) that thisis alot easier
if the language has a well-defined formal grammar. The syntaxes of almost all pro-
gramming languages in use today are defined through aformal grammar.

Some authors (for instance, Chomsky) and some parsing algorithms, require a CF
grammar to be monotonic. The only way a CF rule can be non-monotonic is by having
an empty right-hand side; such aruleis caled an e-rule and a grammar that contains no
such rulesis called e-free. The requirement of being e-free is not areal restriction, just
a nuisance. Any CF grammar can be made e-free be systematic substitution of the ¢-
rules (this process will be explained in detail in 4.2.3.1), but this in general does not
improve the appearance of the grammar. The issue will be discussed further in Section

T COBOL and FORTRAN also have grammars but theirs are informal and descriptive, and were
never intended to be generative.

Sec. 2.3] The Chomsky hierarchy of grammars and languages 35

2.6.

2.3.2.1 Backus-Naur Form

There are severa different styles of notation for CF grammars for programming
languages, each with endless variants, they are all functionally equivalent. We shall
show two main styles here. The first is Backus-Naur Form (BNF) which was first used
for defining ALGOL 60. Hereisasample:

<name>; : = tom| dick | harry
<sentence>s := <nanme> | <list> and <nane>
<list>:= <name>, <list>| <name>

This form’s main properties are the use of angle brackets to enclose non-terminals and
of : : =for “may produce’. In some variants, the rules are terminated by a semicolon.

2.3.2.2 van Wijngaarden form
The second style is that of the CF van Wijngaarden grammars. Again a sample:

nane: tom synbol ; dick synbol; harry synbol.
sentenceg: name; list, and synbol, nane.
list: nane, comma synbol, |ist; nane.

The names of terminal symbols end in ...synbol ; their representations are hardware-
dependent and are not defined in the grammar. Rules are properly terminated (with a
period). Punctuation is used more or less in the traditional way; for instance, the
comma binds tighter than the semicolon. The punctuation can be read as follows:

: “is defined as a(n)”
; “,orasa(n)’
, “followed by a(n)”
“, and as nothing else.”

The second rule in the above grammar would be read as. “a sentence is defined as a
name, or as alist followed by an and-symbol followed by a name, and as nothing else.”
Although this notation achieves its full power only when applied in the two-level van
Wijngaarden grammars, it also has its merits on its own: it is formal and still quite
readable.

2.3.2.3 Extended CF grammars

CF grammars are often made both more compact and more readable by introducing
special short-hands for frequently used constructions. If we return to the Book grammar
of Figure 2.9, we see that rules like:

Sonet hi ngSequence -> Somet hi ng | Somet hi ng Somret hi ngSequence
occur repeatedly. In an extended context-free grammar (ECF grammar), we can write

Sonet hi ng* meaning “one or more Sonet hi ngs’ and we do not need to give arule
for Soret hi ng*; therule

36 Grammars as a generating device [Ch. 2

Sonet hi ng* -> Somet hing | Sonet hi ng Sorret hi ng™

is implicit. Likewise we can use Sorret hi ng* for “zero or more Somet hi ngs’ and
Sonet hi ng? for “zero or one Sonet hi ng” (that is, “optionaly a Somet hi ng”). In
these examples, the operators ™, " and ? work on the precedi ng symbol; their range can
be extended by using parentheses. (Something ;) means “optionaly a
Sonet hi ng-followed-by-a; ”. These facilities are very useful and alow the Book
grammar to be written more efficiently (Figure 2.10). Some styles even allow construc-
tions like Somet hi ng*4 meaning “one or more Sonet hi ngs with a maximum of 4” or
Sonet hi ng*, meaning “one or more Sorret hi ngs separated by commas’; this seems
to be a case of overdoing a good thing.

Bookg -> Preface Chapter™ Concl usion
Preface -> "PREFACE' Paragraph®
Chapt er -> "CHAPTER' Nunber Paragraph*
Paragraph -> Sentence’
Sentence ->

Conclusion -> "QOONCLUSI ON' Paragraph®
Figure 2.10 An extended CF grammar of a book

The extensions of an ECF grammar do not increase its expressive powers. all
implicit rules can be made explicit and then a normal CF grammar results. Ther
strength lies in their user-friendliness. The star in the notation X~ with the meaning “a
sequence of zero or more X's” is called the Kleene star. If Xisaset, X" should be read
as “a sequence of zero or more elements of X”; it is the same star that we saw in =~ in
Section 2.1.3.3. Forms involving the repetition operators * *or?and possibly the
separators (and) are called regular expressions. ECF's, which have regular expres-
sions for their right-hand sides, are for that reason sometimes called regular right part
grammars (RRP grammars) which is more descriptive than “extended context free”,
but which is perceived to be atongue twister by some.

There are two different schools of thought about the structural meaning of a regu-
lar right-hand side. One school maintains that arule like:

Book -> Preface Chapter™ Concl usion
is an abbreviation of

Book -> Preface a Concl usion
a -> Chapter | Chapter O

as shown above. Thisisthe “(right)recursive’ interpretation; it has the advantage that it
is easy to explain and that the transformation to “normal” CF is smple. Disadvantages
are that the transformation entails anonymous rules (identified by O here) and that the
lopsided parse tree for, for instance, a book of four chapters does not correspond to our
idea of the structure of the book; see Figure 2.11.

The seconds school claims that

Sec. 2.3] The Chomsky hierarchy of grammars and languages 37

Figure 2.11 Parsetree for the (right)recursive interpretation
Book -> Preface Chapter™ Concl usion
is an abbreviation of

Book -> Preface Chapter Concl usion
| Preface Chapter Chapter Concl usion
| Preface Chapter Chapter Chapter Concl usion

Thisisthe “iterative” interpretation; it has the advantage that it yields a beautiful parse
tree (Figure 2.12), but the disadvantages that it involves an infinite number of produc-
tion rules and that the nodes in the parse tree have a varying fan-out.

Figure 2.12 Parse tree for the iterative interpretation

Since the implementation of the iterative interpretation is far from trivial, most
practical parser generators use the recursive interpretation in some form or another,
whereas most research has been done on the iterative interpretation.

2.3.3 Type3grammars

The basic property of CF grammars is that they describe things that nest: an object may
contain other objects in various places, which in turn may contain ... etc. When during
the production process we have produced one of the objects, the right-hand side till
“remembers’ what has to come after it: in the English grammar, after having descended
into the depth of the non-terminal Subj ect to produce something liket he wi st f ul

cat, the right-hand side Subj ect Verb bj ect still remembers that a Ver b must

38 Grammars as a generating device [Ch. 2

follow. While we are working on the Subj ect , the Ver b and (bj ect remain queued
at theright in the sentential form, for instance,

the wistful QualifiedNoun Verb (bj ect
In the right-hand side
up ZeroMtion down ZeroMtion

after having performed the up and an arbitrarily complicated Zer oMot i on, the right-
hand side still remembers that adown must follow.

The restriction to Type 3 disallows this recollection of things that came before: a
right-hand side may only contain one non-terminal and it must come at the end. This
means that there are only two kinds of rules: T

A non-terminal produces zero or more terminals
A non-terminal produces zero or more terminals followed by one non-terminal

The original Chomsky definition of Type 3 restricts the kinds of rules to

A non-terminal produces one terminal
A non-terminal produces one terminal followed by one non-terminal

Our definition is equivalent and more convenient, although the conversion to Chomsky
Type 3 isnot completely trivial.

Type 3 grammars are also called regular grammars (RE grammars) or finite-state
grammars (FS grammars). Since regular grammars are used very often to describe the
structure of text on the character level, it is customary for the termina symbols of a
regular grammar to be single characters. We shall therefore write t for Tom d for
D ck, h for Harry and & for and. Figure 2.13 shows a Type 3 grammar for our t,d&h
language in this style.

Sentenceg -> t | d| h| List
List -> 't ListTail | dListTail | h ListTail
ListTail -> , List | & | & | &h

Figure 2.13 A Type 3 grammar for thet, d & hlanguage

The production tree for a sentence from a Type 3 grammar degenerates into a
chain of non-terminals that drop a sequence of terminals on their left. Figure 2.14
shows an example.

The deadly repetition exhibited by the above grammar is typical of regular gram-
mars,; a number of notational devices have been invented to abate this nuisance. The

T There is a natural in-between class, Type 2.5 so to say, in which only a single non-terminal is
allowed in a right-hand side, but where it need not be at the end. This gives us the so-called
linear grammars.

Sec. 2.3] The Chomsky hierarchy of grammars and languages 39

Figure 2.14 Production chain for aregular (Type 3) grammar

most common one is the use of square brackets to indicate “one out of a set of charac-
ters’: [t dh] isan abbreviation for t | d| h:

Sg -> [tdn] | L
L -> [tdh] T
T -> , L| &[tdn]

which may look more cryptic at first but is actually much more convenient and in fact
allows simplification of the grammar to

-> [tdh] |
L -> [tdh] ,

-

| [tdh] & [tdh]

A second way isto alow macros, names for pieces of the grammar that are substi-
tuted properly into the grammar before it is used:

Neme -> t | d| h
Sg -> $hane | L
L -> 3$Nanme, L | $Nane & $Name
The popular parser generator for regular grammars lex (designed and written by Lesk
and Schmidt [FS 1975]) features both facilities.
Note that if we adhere to the Chomsky definition of Type 3, our grammar will not
get smaller than:

Sg -> t | d]| h]| tM]| dM| hM
M -> ,NJ| &

N -> tM]|] dM| hM

P -> t] d] h

This form is evidently easier to process but less user-friendly than the lex version. We

40 Grammars as a generating device [Ch. 2

observe here that while the formal-linguist is interested in and helped by minimally
sufficient means, the computer scientist values aform in which the concepts underlying
the grammar ($Name, etc.) are easily expressed, at the expense of additional processing.

There are two interesting observations about regular grammars which we want to
make here. First, when we use a RE grammar for generating a sentence, the sentential
forms will only contain one non-terminal and this will always be at the end; that’s
where it all happens (using the grammar of Figure 2.13):

SentenceS

Li st

t ListTail

t , List

t , dListTail
t, d&h

The second observation is that all regular grammars can be reduced considerably
in size by using the regular expression operators , * and ? introduced in Section 2.3.2
for “zero or more’, “one or more” and “optionally one”, respectively. Using these

operators and (and) for grouping, we can simplify our grammar to:
S -> (([tdh],)* [tdh]&)? [tdh]

Here the parentheses serve to demarcate the operands of the " and? operators. Regular
expressions exist for al Type 3 grammars. Note that the” and the * work on what pre-
cedes them; to distinguish them from the normal multiplication and addition operators,
they are often printed higher than the level text in print, but in computer input they are
in line with the rest.

234 Typedgrammars

The last restriction we shall apply to what is allowed in a production rule is a pretty
final one: no non-terminal is alowed in the right-hand side. This removes all the gen-
erative power from the mechanism, except for the choosing of aternatives. The start
symbol has a (finite) list of aternatives from which we are allowed to chooseg; this is
reflected in the name finite-choice grammar (FC grammar).

There is no FC grammar for our t,d&h language; if, however, we are willing to
restrict ourselves to lists of names of afinite length (say, no more than a hundred), then
there is one, since one could enumerate all combinations. For the obvious limit of three
names, we get:

Sg -> [tdh] | [tdh] & [tdh] | [tdh] , [tdh] & [tdh]

for atotal of 3+3* 3+3* 3* 3=39 production rules.

FC grammars are not part of the official Chomsky hierarchy, that is, they are not
identified by Chomsky. They are nevertheless very useful and are often required as a
tail-piece in some process or reasoning. The set of reserved words (keywords) in a pro-
gramming language can be described by a FC grammar. Although not many grammars
are FC in their entirety, some of the rules in many grammars are finite-choice. E.g., the
first rule of our first grammar (Figure 2.2) was FC. Another example of a FC rule was

Sec. 2.3] The Chomsky hierarchy of grammars and languages 41

the macro introduced in Section 2.3.3; we do not need the macro mechanism if we
change

Zero or more terminals
in the definition of aregular grammar to
zero or more terminals or FC non-terminals

In the end, the FC non-terminals will only introduce afinite number of terminals.

24 VW GRAMMARS

2.4.1 Thehuman inadequacy of CS and PS grammars

In the preceding paragraphs we have witnessed the introduction of a hierarchy of gram-
mar types:

— phrase structure,

— context-sensitive,

— context-free,

— regular and

— finite-choice.

Although each of the boundaries between the types is clear-cut, some boundaries are
more important than others. Two boundaries specifically stand out: that between
context-sensitive and context-free and that between regular (finite-state) and finite-
choice; the significance of the latter is trivial, being the difference between productive
and non-productive, but the former is profound.

The border between CS and CF is that between global correlation and local
independence. Once a non-termina has been produced in a sentential form in a CF
grammar, its further development is independent of the rest of the sentential form; a
non-terminal in a sentential form of a CS grammar has to look at its neighbours on the
left and on the right, to see what production rules are allowed for it. The local produc-
tion independence in CF grammars means that certain long-range correlations cannot
be expressed by them. Such correlations are, however, often very interesting, since they
embody fundamental properties of the input text, like the consistent use of variables in
a program or the recurrence of a theme in a musical composition. When we describe
such input through a CF grammar we cannot enforce the proper correlations, one
(often-used) way out is to settle for the CF grammar, accept the parsing it produces and
then check the proper correlations with a separate program. This is, however, quite
unsatisfactory since it defeats the purpose of having a grammar, that is, having a con-
cise and formal description of all the properties of the input.

The obvious solution would seem to be the use of a CS grammar to express the
correlations (= the context-sensitivity) but here we run into another, non-fundamental
but very practical problem: CS grammars can express the proper correlations but not in
away a human can understand. It isin this respect instructive to compare the CF gram-
mars in Section 2.3.2 to the one CS grammar we have seen that really expresses a
context-dependency, the grammar for a"b"c" in Figure 2.6. The grammar for the con-
tents of a book (Figure 2.9) immediately suggests the form of the book, but the

42 Grammars as a generating device [Ch. 2

grammar of Figure 2.6 hardly suggests anything, even if we can still remember how it
was constructed and how it works. This is not caused by the use of short names like Q
aversion with more informative names (Figure 2.15) is still puzzling. Also, one would
expect that, having constructed a grammar for a"b"c", making one for a"b"c"d"
would be straightforward. Such is not the case; a grammar for a"b"c"d" is substan-
tially more complicated (and even more opaque) than one for a"b"c" and requires
rethinking of the problem.

-> abc| a$Sbc_pack
b bc pack c -> bbcec
c bc_pack -> bc_pack c

Figure 2.15 Monotonic grammar for a"b"c" with more informative names

The cause of al this misery is that CS and PS grammars derive their power to
enforce global relationships from “just slightly more than local dependency”. Theoreti-
cally, just looking at the neighbours can be proved to be enough to express any global
relation, but the enforcement of a long-range relation through this mechanism causes
information to flow through the sentential form over long distances. In the production
process of, for instance, a*b%c*, we see several bc_packs wind their way through the
sentential form, and in any serious CS grammar, many messengers run up and down the
sentential form to convey information about developments in far-away places. How-
ever interesting this imagery may seem, it requires amost al rules to know something
about ailmost all other rules; this makes the grammar absurdly complex.

Several grammar forms have been put forward to remedy this situation and make
long-range relationships more easily expressible; among them are indexed grammars
(Aho [PSCS 1968]), recording grammars (Barth [PSCS 1979]), affix grammars
(Koster [VW 1971]) and VW grammars (van Wijngaarden [VW 1969]). The last are
the most elegant and effective, and are explained below. Affix grammars are discussed
briefly in 2.4.5.

24.2 VW grammars

It is not quite true that CF grammars cannot express long-range relations; they can only
express afinite number of them. If we have alanguage the strings of which consist of a
begi n, am ddl e and an end and suppose there are three types of begi ns and ends,
then the CF grammar of Figure 2.16 will enforce that the type of the end will properly
match that of the begi n.

textg -> beginl mddle endl
| begi n2 m ddl e end2
| begi n3 m ddl e end3

Figure 2.16 A long-range relation-enforcing CF grammar

We can think of (and) for begi n1 and end1, [and] for begi n2 and end2 and {
and} for begi n3 and end3; the CF grammar will then ensure that closing parentheses
will match the corresponding open parentheses.

By making the CF grammar larger and larger, we can express more and more

Sec. 2.4] VW grammars 43

long-range relations; if we make it infinitely large, we can express any number of
long-range relations and have achieved full context-sensitivity. Now we come to the
fundamental idea behind VW grammars. The rules of the infinite-size CF grammar
form an infinite set of strings, i.e., a language, which can in turn be described by a
grammar. This explains the name “two-level grammar”.

To introduce the concepts and techniques we shall give here an informal construc-
tion of a VW grammar for the above language L = a"b"c" for n=1. We shall use the
VW notation as explained in 2.3.2.2: the names of terminal symbols end in synbol and
their representations are given separately; alternatives are separated by semicolons (;),
members inside alternatives are separated by commas (which allows us to have spaces
in the names of non-terminals) and a colon (:) is used instead of an arrow.

We could describe the language L through a context-free grammar if grammars of
infinite size were allowed:

textg a synbol, b synbol, c synbol;
a synbol, a synbol,
b synbol, b synbol,
c synbol, c synbol;
a synbol, a synbol, a synbol,
b synbol, b synbol, b synbol,
c synbol, c synbol, c synbol;

We shall now try to master this infinity by constructing a grammar which allows
us to produce the above grammar for as far as needed. We first introduce an infinite
number of names of non-terminals:

textg ai, bi, ci;
aii, bii, cii;
aiii, biii, ciii;

together with three infinite groups of rules for these non-terminals:

ai: a synbol .
aii: a synbol, ai.
aiii: asynbol, aii.
bi : b synbol .

bii: b synbol, bi.
biii: b

synbol , bii.

44 Grammars as a generating device [Ch. 2

Ci: c synbol .
Cii: c synbol, ci.
ciii: ¢ synbol, cii.

Here the i ’s count the number of a’s, b’s and ¢’s. Next we introduce a special
kind of name called a metanotion. Rather than being capable of producing (part of) a
sentence in the language, it is capable of producing (part of) a name in a grammar rule.
In our example we want to catch the repetitions of i ’sin a metanotion N, for which we
give a context-free production rule (a metarule):

N :: i ;i N.

Note that we use a dlightly different notation for metarules: left-hand side and right-
hand side are separated by a double colon (::) rather than by a single colon and
members are separated by a blank () rather than by a comma. The metanotion N pro-
ducesi ,ii,iii,etc, which are exactly the parts of the non-terminal names we need.

We can use the production rules of N to collapse the four infinite groups of rules
into four finite rule templates called hyper-rules.

texts: aN bN cN

ai: a synbol .
ai N a synbol, a N
bi: b synbol .
bi N b synbol, b N
Ci: c synbol .

ci N c synbol, ¢ N

Each origina rule can be obtained from one of the hyper-rules by substituting a
production of N from the metarules for each occurrence of N in that hyper-rule, pro-
vided that the same production of N is used consistently throughout. To distinguish
them from normal names, these half-finished combinations of small letters and metano-
tions(likea Norb i N) arecalled hypernotions. Substituting, for instance, N=iii in
the hyperrule

bi N bsynbol, b N
yields the CF rule for the CF non-terminal bi i i i
biiii: b synbol, biii.
We can also use this technique to condense the finite parts of a grammar by hav-
ing a metarule A for the symbols a, b and c. Again the rules of the game require that

the metanotion A be replaced consistently. The final result is shown in Figure 2.17.
This grammar gives a clear indication of the language it describes. once the

Sec. 2.4] VW grammars 45

N :: i ;i N.
A a: b: c.

textd aN bN cN
Ai: A synbol .
Ai N Asynbol, AN

Figure 2.17 A VW grammar for the language a"b"c"

“value’ of the metanotion Nis chosen, production is straightforward. It is now trivial to
extend the grammar to a"b"c"d". It is also clear how long-range relations are esta-
blished without having confusing messengers in the sentential form: they are esta-
blished before they become long-range, through consistent substitution of metanotions
in simple right-hand sides. The “consistent substitution rule” for metanotions is essen-
tial to the two-level mechanism; without it, VW grammars would be equivalent to CF
grammars (Meersman and Rozenberg [VW 1978]).

A very good and detailed explanation of VW grammars has been written by Craig
Cleaveland and Uzgalis [VW 1977], who aso show many applications. Sintzoff [VW
1967] has proved that VW grammars are as powerful as PS grammars, which also
shows that adding a third level to the building cannot increase its powers. Van
Wijngaarden [VW 1974] has shown that the metagrammar need only be regular
(although simpler grammars may be possible if it is allowed to be CF).

2.4.3 Infinite symbol sets

In a sense, VW grammars are even more powerful than PS grammars. since the name
of a symbol can be generated by the grammar, they can easily handle infinite symbol
sets. Of course this just shifts the problem: there must be a (finite) mapping from sym-
bol names to symbols somewhere. The VW grammar of Figure 2.18 generates sen-
tences consisting of arbitrary numbers of equal-length stretches of equal symbols, for
instance, S1S1S1S2S2S> O S1S15252,S35354S4S5S5, Where s, is the representation of
i M synbol . The minimum stretch length has been set to 2, to prevent the grammar
from producing =" .

N :: nN €.

C:: i; i C

textg Ni tail.

NCtail: €& NC NCi tail.
NnC: C synbol, NC

C: €.

Figure 2.18 A grammar handling an infinite alphabet

2.4.4 BNF notation for VW grammars

There is a different notation for VW grammars, sometimes used in formal language
theory (for instance, Greibach [VW 1974]), which derives from the BNF notation (see
Section 2.3.2.1). A BNF form of our grammar from Figure 2.17 is given in Figure 2.19;
hypernotions are demarcated by angle brackets and terminal symbols are represented

46 Grammars as a generating device [Ch. 2

by themselves.

N -> i] i N

A -> a| b]| c

<t ext > -> <aN> <bN> <cN>
<Ai> -> A

<AN> -> A <AN
Figure 2.19 The VW grammar of Figure 2.17 in BNF notation

245 Affix grammars

Like VW grammars, affix grammars establish long-range relations by duplicating
information in an early stage; this information is, however, not part of the non-terminal
name, but is passed as an independent parameter, an affix, which can, for instance, be
an integer value. Normally these affixes are passed on to the members of a rule, until
they are passed to a special kind of non-terminal, a primitive predicate. Rather than
producing text, a primitive predicate contains alegality test. For a sentential form to be
legal, al the legality tests in it have to succeed. The affix mechanism is equivalent to
the VW metanotion mechanism, is dlightly easier to handle while parsing and slightly
more difficult to use when writing a grammar.

An affix grammar for a"b"c" isgivenin Figure 2.20. Thefirst two lines are affix
definitions for N, M A and B. Affixes in grammar rules are traditionally preceded by a
+. The names of the primitive predicates start with wher e. To produce abc, start with
text + 1;thisproduces

list +1 +a, list +1+Db, list +1+¢c
The second member of this, for instance, produces

letter + b, where is decreased + 0 + 1, list + 0 + Db
the first member of which produces

where is + b + b, b synbol.
All the primitive predicates in the above are fulfilled, which makes the final sentence
legal. An attempt to let | etter + b produce a synbol introduces the primitive
predicatewhere is + a + b which fails, invalidating the sentential form.

Affix grammars have largely been replaced by attribute grammars, which achieve

roughly the same effect through similar but conceptually different means (see Section
2.9.1).

Sec. 2.4] VW grammars 47

N M: i nt eger.
A B: a, b; c.
textS+N list + N+ a, list + N+ b, list + N+ c.
list + N+ A where is zero + N
letter + AL where is decreased + M+ N
list + M+ A
letter + A where is + A+ a, a synbol ;

where is + A+ b, b synbol;
where is + A+ ¢, ¢ synbol.

where is zero + N {N = 0}.

where i s decreased
+ M+ N {M=N- 1}.

where is + A+ B {A = B}.

Figure 2.20 Affix grammar for a"b"c"

25 ACTUALLY GENERATING SENTENCESFROM A GRAMMAR

25.1 Thegeneral case

Until now we have only produced single sentences from our grammars, in an ad hoc

fashion, but the purpose of a grammar is to generate al its sentences. Fortunately there

is a systematic way to do so. We shall use the a"b"c" grammar as an example. We
start from the start symbol and systematically make all possible substitutions to gen-
erate all sentential forms; we just wait and see which ones evolve into sentences and
when. Try this by hand for, say, 10 sentential forms. If we are not careful, we are apt to
generate forms like aSQ, aaSQQ, aaaSQQQ,... only and we will never see a finished
sentence. The reason is that we focus too much on a single sentential form; we have to
give equal time to all of them. This can be done through the following algorithm, which
keeps a queue (that is, a list to which we add at the end and remove from the begin-
ning), of sentential forms.

Start with the start symbol as the only sentential form in the queue. Now continue
doing the following:

o Consider the first sentential form in the queue.

o Scan it from left to right, looking for strings of symbols that match the left-hand
side of aproduction rule.

g For each such string found, make enough copies of the sentential form, replace in
each one the string that matched a left-hand side of arule by a different alternative
of that rule, and add them all to the end of the queue.

g |If theorigina sentential form did not contain any non-terminals, write it down as
a sentence in the language.

438 Grammars as a generating device [Ch. 2

o Throw away the sentential form; it has been fully processed.
If no rule matched, and the sentential form was not a finished sentence, it was a
blind alley; they are removed automatically by the above process and leave no trace.
The first couple of steps of this process for our a"b"c" grammar from Figure 2.6
are depicted in Figure 2.21. The queue runsto the right, with the first item on the | eft.

Step Queue Result
1 S
2 abc asQ abc
3 asQ
4 aabcQ aaSQQ
5 aaSQQ aabQ
6 aabQ aaabcQQ aaasSQQ
7 aaabcQQ aaaSQQ aabbcc
8 aaasSQQ aabbcc aaab@xQ
9 aabbcc aaabQQ aaaabcQQQ aaaaSQAQ aabbcc
10 aaabQ aaaabcQQQ aaaaSQUQ
11

aaaabcQQ aaaaSQUQ aaabbccQ aaabQ

Figure 2.21 Thefirst couple of stepsin producing for a"b"c"

We see that we do not get a sentence for each time we turn the crank; in fact, in this
case real sentences will get scarcer and scarcer. The reason is of course that as the pro-
cess progresses, more and more side lines develop, which all require equal attention.
Still, we can be certain that every sentence that can be produced, will in the end be pro-
duced: we leave no stone unturned. This way of doing thingsis called breadth-first pro-
duction; computers are better at it than people.

It is tempting to think that it is unnecessary to replace all left-hand sides that we
found in the top-most sentential form. Why not just replace the first one and wait for
the resulting sentential form to come up again and then do the next one? Thisiswrong,
however, since doing the first one may ruin the context for doing the second one. A
simple example is the grammar

SS -> AC
A -> b
AC -> ac

First doing A->b will lead to a blind alley and the grammar will produce nothing.
Doing both possible substitutions will lead to the same blind alley, but then there will
also be a second sentential form, ac. This is also an example of a grammar for which
the queue will get empty after a (short) while.

If the grammar is context-free there is no context to ruin and it is quite safe to just
replace the first match.

There are two remarks to be made here. First, it is not at all certain that we will
indeed obtain a sentence for al our effort: it is quite possible that every new sentential
form again contains non-terminals. We should like to know this in advance by examin-
ing the grammar, but it can be proven that it is in general impossible to do so. The

Sec. 2.5] Actually generating sentences from a grammar 49

formal-linguist says “It is undecidable whether a PS grammar produces the empty set”,
which means that there cannot be an agorithm that will for every PS grammar
correctly tell if the grammar produces at least one sentence. This does not mean that we
cannot prove for some given grammar that it generates nothing, if that is the case, only
that the proof method used will not work for all grammars. we could have a program
that correctly says Yes in finite time if the answer is Yes but that takes infinite time if
the answer is No; in fact, our generating procedure above is such an algorithm that
gives the correct Yes/No answer in infinite time (although we can have an algorithm
that gives a Yes/Don't know answer in finite time). Although it is true that because of
some deep theorem in formal linguistics we cannot always get exactly the answer we
want, this does not prevent us from obtaining al kinds of useful information that gets
close. We shall see that this is a recurring phenomenon. The computer scientist is
aware of but not daunted by the impossibilities from formal linguistics.

The second remark is that when we do get sentences from the above production
process, they may be produced in an unpredictable order. For non-monotonic grammars
the sentential forms may grow for a while and then suddenly shrink again, perhaps to
the empty string. Formal linguistics says that there cannot be an algorithm that for all
PS grammars will produce their sentences in increasing (actually “non-decreasing”)
length.

The production of all sentences from a van Wijngaarden grammar poses a special
problem in that there are effectively infinitely many left-hand sides to match with. For
atechnique to solve this problem, see Grune [VW 1984].

252 TheCF case

When we generate sentences from a CF grammar, many things are alot smpler. It can
still happen that our grammar will never produce a sentence, but now we can test for
that beforehand, as follows. First scan the grammar to find all non-terminals that have a
right-hand side that contains terminals only or is empty. These non-terminas are
guaranteed to produce something. Now scan again to find non-terminals that have a
right-hand side that consists of only terminals and non-terminals that are guaranteed to
produce something. This will give us new non-terminals that are guaranteed to produce
something. Repesat this until we find no more new such non-terminals. If we have not
met the start symbol this way, it will not produce anything.

Furthermore we have seen that if the grammar is CF, we can afford to just rewrite
the left-most non-terminal every time (provided we rewrite it into all its alternatives).
Of course we can aso consistently rewrite the right-most non-terminal; both
approaches are similar but different. Using the grammar

00 N -> t] d] h
1 S -> N|L&N
22 C -> N, LJ| N

let us follow the adventures of the sentential form that will eventually result in d,h&h.
Although it will go several times up and down the production queue, we only depict
here what changes are made to it. We show the sentential forms for left-most and
right-most substitution, with the rules and alternatives involved; for instance, (1b)
means rule 1 aternative b.

50 Grammars as a generating device

S
1b

L&N
2a

N L&N
Ob

d, L&N
2b

d, N&N
Oc

d, h&N
Oc

d, h&h

S
1b

L&N
Oc

L&h
2a

N L&
2b

N, N&h
Oc

N, h&h
Ob

d, h&h

[Ch.

The sequences of production rules used are not as similar as we would expect; of

course, in grand total the same rules and alternatives are applied but the sequences are

neither equal nor each other’s mirror image, nor is there any other obvious relationship.
Still both define the same production tree:

@ Mm@ Mo

but if we number the non-terminalsin it in the order they were rewritten, we would get

different numberings:

Left-most derivation order

Right-most derivation order

The sequence of production rules used in left-most rewriting is called the left-most
derivation of a sentence. We do not have to indicate where each rule must be applied

Sec. 2.5] Actually generating sentences from a grammar 51

and need not even give its rule number; both are implicit in the left-most substitution.
A right-most derivation is defined in the obvious way.

The production sequence S - L&N - N L&N - d, L&N - d, N&N - d, h&N -
d, h&h can be abbreviated to S 1 d, h&h. Likewise, the sequence S -~ L&N - L& -
N L& - N N&h - N h&h - d, h&h can be abbreviated to S + d, h&h. The fact that
S producesd, h&h in any way iswrittenas S % d, h&h.

The task of parsing is to reconstruct the parse tree (or graph) for a given input
string, but some of the most efficient parsing techniques can be understood more easily
if viewed as attempts to reconstruct a left- or right-most derivation of the input string;
the parse tree then follows automatically. This is why the notion “[left|right]-most
derivation” will occur frequently in this book (note the FC grammar used here).

2.6 TO SHRINK OR NOT TO SHRINK

In the previous paragraphs, we have sometimes been explicit as to the question if a
right-hand side of a rule may be shorter than its left-hand side and sometimes we have
been vague. Type O rules may definitely be of the shrinking variety, monotonic rules
definitely may not, and Type 2 and 3 rules can shrink only by producing empty (€), that
much is sure.

The original Chomsky hierarchy [Misc 1959] was very firm on the subject: only
Type O rules are alowed to make a sentential form shrink. Type 1 to 3 rules are all
monotonic. Moreover, Type 1 rules have to be of the context-sensitive variety, which
means that only one of the non-terminals in the left-hand side is actually allowed to be
replaced (and then not by €). This makes for a proper hierarchy in which each next
class is a proper subset of its parent and in which all derivation graphs except for those
of Type 0 grammars are actually derivation trees.

As an example consider the grammar for the language a"b"c" given in Figure
2.6:

1. Sg -> abc| aSQ
2. bQ@x -> Dbbcc
3. cQ ->

which is monotonic but not context-sensitive in the strict sense. It can be made CS by
expanding the offending rule 3 and introducing a non-terminal for c:

1 Sg -> abC| aSQ
2. bQC -> bbCC
3a. aQ -> X

3b. X -> &
3c. X ->
4. C -> ¢

Now the production graph of Figure 2.7 turns into a production tree:

52 Grammars as a generating device [Ch. 2

There is an additional reason for shunning e-rules: they make both proofs and
parsers more complicated. So the question arises why we should bother with g-rules at
al; the answer isthat they are very convenient for the grammar writer and user.

If we have a language that is described by a CF grammar with e-rules and we
want to describe it by a grammar without e-rules, then that grammar will almost always
be more complicated. Suppose we have a system that can be fed bits of information,
like: “Amsterdam is the capital of the Netherlands’, “Truffles are expensive”, and can
then be asked a question. On a very superficial level we can defineitsinput as:

inputg zero-or-nore-bits-of-info question
or, in an extended notation
inputg bit-of-info question

Since zer o- or - nor e- bi t s- of - i nf o will, among other strings, produce the empty
string, at least one of the rules used in its grammar will be an e-rule; the " in the
extended notation already implies an e-rule somewhere. Still, from the user’s point of
view, the above definition of input nesatly fits the problem and is exactly what we want.

Any attempt to write an e-free grammar for this input will end up defining a
notion that comprises some of the later bi t s- of -i nf o together with the quest i on
(since the quest i on is the only non-empty part, it must occur in all rules involved!);
but such a notion does not fit our problem at all and is an artifact:

inputg question-preceded- by-info
guesti on- preceded- by-info: question

| bit-of-info question-preceded-by-info

As a grammar becomes more and more complicated, the requirement that it be e-free
becomes more and more a nuisance: the grammar isworking against us, not for us.
This presents no problem from a theoretical point of view: any CF language can

Sec. 2.6] To shrink or not to shrink 53

be described by an e-free CF grammar and e-rules are never needed. Better still, any
grammar with g-rules can be mechanically transformed into an e-free grammar for the
same language; we saw an example of such a transformation above and details of the
algorithm are given in Section 4.2.3.1. But the price we pay is that of any grammar
transformation: it is no longer our grammar and it reflects the original structure less
well.

The bottom line is that the practitioner finds the e-rule to be a useful tool, and it
would be interesting to see if there exists a hierarchy of non-monotonic grammars
alongside the usual Chomsky hierarchy. To alarge extend there is: Type 2 and Type 3
grammars need not be monotonic (since they can always be made so if the need arises);
it turns out that context-sensitive grammars with shrinking rules are equivalent to
unrestricted Type O grammars, and monotonic grammars with e-rules are aso
equivalent to Type 0 grammars. We can now draw the two hierarchies in one picture;
see Figure 2.22.

Chomsky (monotonic) non-monotonic
hierarchy hierarchy
unrestricted monotonic unrestricted phrase
TypeO | phrase struc- grammars structure grammars
global ture grammars | with g-rules
production
effects context- monotonic context-sensitive
Typel sensitive grammars grammars with non-
grammars without - monotonic rules
rules
Type2 | context-free e-free grammars context-free gram-
local mars
production
effects Type 3 regular (e-free) grammars regular grammars
regular expressions
no production | Type4 finite-choice

Figure 2.22 Summary of grammar hierarchies

Drawn lines separate grammar types with different power, broken lines separate con-
ceptualy different grammar types with the same power. We see that if we insist on
non-monotonicity, the distinction between Type 0 and Type 1 disappears.

A special case arises if the language of a Type 1 to Type 3 grammar itself contains
the empty string. This cannot be incorporated into the grammar in the monotonic
hierarchy since the start symbol has already length 1 and no monotonic rule can make it
shrink; the empty string has to be attached as a special property to the grammar. No
such problem occurs in the non-monotonic hierarchy.

Many parsing methods will in principle work for e-free grammars only: if some-
thing does not produce anything, you can’'t very well see if it's there. Often, however,
the parsing method can be doctored so that it will be able to handle e-rules.

54 Grammars as a generating device [Ch. 2

27 A CHARACTERIZATION OF THE LIMITATIONS OF CF AND FS
GRAMMARS

When one has been working for awhile with CF grammars, one gradually gets the feel-
ing that almost anything could be expressed in a CF grammar. That there are, however,
serious limitations to what can be said by a CF grammar is shown by the famous uvwxy
theorem, which is explained below.

2.7.1 Theuvwxy theorem

When we have obtained a sentence from a CF grammar, we may look at each (termi-
nal) symbol in it, and ask: How did it get here? Then, looking at the production tree, we
see that it was produced as, say, the n-th member of the right-hand side of rule number
m. The left-hand side of this rule, the parent of our symbol, was again produced as the
p-th member of rule g, and so on, until we reach the start symbol. We can, in a sense,
trace the lineage of the symbol in this way. If al rule/member pairs in the lineage of a
symbol are different, we call the symbol original, and if all the symbols in a sentence
are original, we call the sentence “original”.

Now there is only afinite number of ways for a given symbol to be original. This
is easy to see as follows. All rule/member pairs in the lineage of an original symbol
must be different, so the length of its lineage can never be more than the total number
of different rule/member pairsin the grammar. There are only so many of these, which
yields only a finite number of combinations of rule/member pairs of this length or
shorter. In theory the number of original lineages of a symbol can be very large, but in
practice it is very small: if there are more than, say, ten ways to produce a given sym-
bol from agrammar by original lineage, your grammar will be very convoluted!

This puts severe restrictions on origina sentences. If a symbol occurs twice in an
original sentence, both its lineages must be different: if they were the same, they would
describe the same symbol in the same place. This means that there is a maximum
length to original sentences: the sum of the numbers of original lineages of al symbols.
For the average grammar of a programming language this length is in the order of some
thousands of symbols, i.e., roughly the size of the grammar. So, since there is a longest
original sentence, there can only be a finite number of original sentences, and we arrive
at the surprising conclusion that any CF grammar produces a finite-size kernel of origi-
nal sentences and (probably) an infinite number of unoriginal sentences!

v '—qW Tx y

Figure 2.23 An unoriginal sentence: uvwxy

What do “unoriginal” sentences look like? This is where we come to the uvwxy

Sec. 2.7] A characterization of the limitations of CF and FS grammars 55

theorem. An unoriginal sentence has the property that it contains at least one symbol in
the lineage of which a repetition occurs. Suppose that symbol is a g and the repeated
rule is A. We can then draw a picture similar to Figure 2.23, where w is the part pro-
duced by the most recent application of A, vwx the part produced by the other applica-
tion of A and uvwxy is the entire unoriginal sentence. Now we can immediately find
another unorigina sentence, by removing the smaller triangle headed by A and replac-
ing it by a copy of the larger triangle headed by A; see Figure 2.24.

Figure 2.24 Another unoriginal sentence, uv2wx2y

This new tree produces the sentence uvwwwxxy and it is easy to see that we can, in this
way, construct a complete family of sentences uv"wx"y for all n=0; thewisnestedin a
number of v and x brackets, in an indifferent context of uandy.

The bottom line is that when we examine longer and longer sentences in a
context-free language, the original sentences become exhausted and we meet only fam-
ilies of closely related sentences telescoping off into infinity. This is summarized in
the uvwxy theorem: any sentence generated by a CF grammar, that is longer than the
longest origina sentence from that grammar, can be cut into five piecesu, v, w, x and y
in such away that uv"wx"y is a sentence from that grammar for all n=0. The uvwxy
theorem has several variants; it is aso caled the pumping lemma for context-free
languages.

Two remarks must be made here. Thefirst isthat if alanguage keeps on being ori-
ginal in longer and longer sentences without reducing to families of nested sentences,
there cannot be a CF grammar for it. We have aready encountered the context-
sensitive language a"b"c" and it is easy to see (but not quite so easy to prove!) that it
does not decay into such nested sentences, as sentences get longer and longer. Conse-
guently, there is no CF grammar for it.

The second is that the longest origina sentence is a property of the grammar, not
of the language. By making a more complicated grammar for a language we can
increase the set of origina sentences and push away the border beyond which we are
forced to resort to nesting. If we make the grammar infinitely complicated, we can push
the border to infinity and obtain a phrase structure language from it. How we can make
a CF grammar infinitely complicated, is described in the Section on two-level gram-
mars, 2.4.

56 Grammars as a generating device [Ch. 2

2.7.2 Theuvww theorem

Sart_symbol

A A appears again

Figure 2.25 Repeated occurrence of A may result in repeated occurrence of v

A simpler form of the uvwxy theorem applies to regular (Type 3) languages. We have
seen that the sentential forms occurring in the production process for a FS grammar al
contain only one non-terminal, which occurs at the end. During the production of a
very long sentence, one or more non-terminals must occur two or more times, since
there are only a finite number of non-terminals. Figure 2.25 shows what we see, when
we list the sentential forms one by one; the substring v has been produced from one
occurrence of A to the next, u is a sequence that allows us to reach A, and w is a
sequence that allows us to terminate the production process. It will be clear that, start-
ing from the second A, we could have followed the same path as from the first A, and
thus have produced uvww. This leads us to the uvw theorem, or the pumping lemma for
regular languages: any sufficiently long string from a regular language can be cut into
three pieces u, v and w, so that uv"w is astring in the language for all n=0.

2.8 HYGIENE IN GRAMMARS

Although the only requirement for a CF grammar is that there is exactly one non-
terminal in the left-hand sides of all its rules, such a general grammar can suffer from a
(small) number of ailments.

2.8.1 Undefined non-terminals

The right-hand sides of some rules may contain non-terminals for which no production
rule is given. Remarkably, this does not seriously affect the sentence generation pro-
cess described in 2.5.2: if asentential form containing an undefined non-terminal turns
up for processing in aleft-most production process, there will be no match, and the sen-
tential form is a blind aley and will be discarded. The rule with the right-hand side
containing the undefined non-terminal will never have issue and can indeed be
removed from the grammar. (If we do this, we may of course remove the last defini-
tion of another non-terminal, which will then in turn become undefined, etc.)

From a theoretical point of view there is nothing wrong with an undefined non-
terminal, but if a user-specified grammar contains one, there is amost certainly an
error, and any grammar-processing program should mark such an occurrence as an
error.

Sec. 2.8] Hygienein grammars 57

2.8.2 Unused non-terminals

If a non-terminal never occurs in the right-hand side of any rule, its defining rules will
never be used. Again this is no problem, but amost certainly implies an error some-
where.

This error is actually harder to detect than it looks. Just searching all right-hand
sides is not good enough: imagine a rule X — aX where X does not occur elsewhere in
the grammar. Then X occurs in a right-hand side, yet it will never be used. An ago-
rithm to determine the set of unused non-terminalsis given in Section 4.2.3.4.

2.8.3 Non-productive non-terminals
Suppose X has asits only rule X - aX and suppose X can be reached from the start sym-
bol. Now X will still not contribute anything to the sentences of the language of the
grammar, since once X is introduced, there is no way to get rid of X: any non-terminals
that does not in itself produce a sublanguage is non-productive and its rules can be
removed. Note that such removal will make the non-terminal undefined. An algorithm
to determine if a non-terminal generates anything at all isgivenin 4.2.3.3.

To clean up a grammar, it is necessary to first remove the non-productive non-
terminals, then the undefined ones and then the unused ones. These three groups
together are called useless non-terminals.

2.8.4 Loops

The above definition makes “non-useless’ al rules that can be involved in the produc-
tion of a sentence, but there still is aclass of rules that are not really useful: rules of the
form A - A. Such rules are called loops: loops can also beindirect: A-B,B - C, C-A.
A loop can legitimately occur in the production of a sentence, but if it does there isalso
a production of that sentence without the loop. Loops don’t contribute to the language
and any sentence the production of which involves a loop is infinitely ambiguous,
meaning that there are infinitely many production trees for it. Algorithms for loop
detection are given in Section 4.1.2.

Different parsers react differently to grammars with loops. Some (most of the gen-
eral parsers) faithfully attempt to construct an infinite number of parse trees, some (for
instance, the CYK parser) collapse the loop as described above and some (most deter-
ministic parsers) reject the grammar. The problem is aggravated by the fact that loops
can be conceadled by e-rules. a loop may only become visible when certain non-
terminals produce .

29 THE SEMANTIC CONNECTION

Sometimes parsing serves only to check the correctness of a string; that the string con-
forms to a given grammar may be all we want to know, for instance because it confirms
our hypothesis that certain observed patterns are indeed correctly described by the
grammar we have designed for it. Often, however, we want to go further: we know that
the string conveys a meaning, its semantics, and this semantics is directly related to the
structure of the production tree of the string. (If it is not, we have the wrong grammar!)
Attaching semantics to a grammar is done in a very simple and effective way: to
each rule in the grammar, a semantic clause is attached that relates the semantics of the
members of the right-hand side of the rule to the semantics of the entire rule (in which
case the semantic information flows from the leaves of the tree upwards to the start

58 Grammars as a generating device [Ch. 2

symbol) or the other way around (in which case the semantic information flows down-
wards from the start symbol to the leaves) or both ways (in which case the semantic
information may have to flow up and down for a while until a stable situation is
reached). Semantic information flowing down is called inherited: each rule inherits it
from its parent in the tree; semantic information flowing up is called derived: each rule
derivesit from its children.

There are many ways to express semantic clauses; since our subject is parsing and
syntax rather than semantics, we will briefly describe only two often-used and well-
studied techniques: attribute grammars and transduction grammars. We shall explain
both using the same ssimple example, the language of sums of one-digit numbers; the
semantics of a sentence in this language is the value of the sum. The language is gen-
erated by the grammar of Figure 2.26.

Sumy -> Dgit
Sum -> Sum+ Digit
Dgit -> 0] 1] ... 19

Figure 2.26 A grammar for sums of one-digit numbers
One of its sentences is, for instance, 3+5+1; its semantics is 9.

2.9.1 Attribute grammars

The semantic clauses in an attribute grammar assume that each node in the production
tree has room for one or more attributes, which are just values (numbers, strings or
anything else) sitting in nodes in production trees. For simplicity we restrict ourselves
to attribute grammars with only one attribute per node. The semantic clause of arule in
such a grammar contains some formulas which calculate the attributes of some of the
non-terminals in that rule (=nodes in the production tree) from other non-terminals in
that rule.

If the semantic clause of arule R calculates the attribute of the left-hand side of R,
that attribute is derived; if it calculates an attribute of one of the non-terminals in the
right-hand side of R, say T, then that attribute is inherited by T. Derived attributes are
also called “synthesized attributes’. The attribute grammar for our example is:

1. Sunb -> D gl t {AO::Al}

2. Sum -> Sum+ Digit {Ag=Ai1tAg}
3a Dagit -> 0 {Ag:=0}

3. Dugit -> 9 {Ap:=%

The semantic clauses are given between curly brackets. Ag is the (derived) attribute of
the left-hand side, A; - - - A, are the attributes of the members of the right-hand side.
Traditionally, terminal symbols in aright-hand side are also counted in determining the
index of A, although they do not (normally) carry attributes; the Digit in rule 2 isin
position 3 and its attribute is Az. Most systems for handling attribute grammars have
less repetitive ways to express rule 3a through 3j.

The initial parse tree for 3+5+1 is given in Figure 2.27. First only the attributes
for the leaves are known, but as soon as al attributes in a right-hand side of a

Sec. 2.9] The semantic connection 59

Figure 2.27 Initial stage of the attributed parse tree

production rule are known, we can use its semantic clause to calculate the attribute of
its left-hand side. This way the attribute values (semantics) percolate up the tree, finally
reach the start symbol and provide as with the semantics of the whole sentence, as
shown in Figure 2.28. Attribute grammars are a very powerful method of handling the
semantics of alanguage.

Figure 2.28 Fully attributed parse tree

2.9.2 Transduction grammars

Transduction grammars define the semantics of a string (the “input string”) as another
string, the “output string” or “trandation”, rather than as the final attribute of the start
symbol. This method is less powerful but much simpler than using attributes and often
sufficient. The semantic clause in a rule just contains the string that should be output
for the corresponding node. We assume that the string for a node is output just after the
strings for al its children. Other variants are possible and in fact usual. We can now
write a transduction grammar which transates a sum of digits into instructions to cal-
culate the value of the sum.

1 Sumy -> Dgit {"make it the result"}

2. Sum -> Sum+ Dgit {"add it to the previous result"}
3a. Dgit -> 0 {"take a 0"}

3. Dagit -> 9 {"take a 9"}

This transduction grammar translates 3+5+1 into:

takea 3

make it the result

takeab

add it to the previous result
takeal

add it to the previous result

60 Grammars as a generating device [Ch. 2

which isindeed what 3+5+1 “means’.

210 A METAPHORICAL COMPARISON OF GRAMMAR TYPES

Text books claim that “ Type n grammars are more powerful than Type n+1 grammars,
for n=0,1,2", and one often reads statements like “A regular (Type 3) grammar is not
powerful enough to match parentheses’. It is interesting to see what kind of power is
meant. Naively, one might think that it is the power to generate larger and larger sets,
but this is clearly incorrect: the largest possible set of strings, =, is easily generated by
the straightforward Type 3 grammar:

S -> [2 S| ¢
where [Z] is an abbreviation for the symbolsin the language. It is just when we want to
restrict this set, that we need more powerful grammars. More powerful grammars can
define more complicated boundaries between correct and incorrect sentences. Some
boundaries are so fine that they cannot be described by any grammar (that is, by any
generative process).

This idea has been depicted metaphoricaly in Figure 2.29, in which a rose is
approximated by increasingly finer outlines. In this metaphor, the rose corresponds to
the language (imagine the sentences of the language as molecules in the rose); the
grammar serves to delineate its silhouette. A regular grammar only allows us straight
horizontal and vertical line segments to describe the flower; ruler and T-square suffice,
but the result is a coarse and mechanical-looking picture. A CF grammar would
approximate the outline by straight lines at any angle and by circle segments; the draw-
ing could still be made using the classical tools of compasses and ruler. The result is
stilted but recognizable. A CS grammar would present us with a smooth curve tightly
enveloping the flower, but the curve is too smooth: it cannot follow all the sharp turns
and it deviates dlightly at complicated points; still, a very redlistic picture results. An
unrestricted phrase structure grammar can represent the outline perfectly. The rose
itself cannot be caught in a finite description; its essence remains forever out of our
reach.

A more prosaic and practical example can be found in the successive sets of Pas-
ca’l programs that can be generated by the various grammar types.

o The set of al lexicaly correct Pascal programs can be generated by a regular
grammar. A Pascal program is lexically correct if there are no newlines inside
strings, comment is terminated before end-of-file, all numerical constants have the
right form, etc.

o The set of al syntactically correct Pascal programs can be generated by a
context-free grammar. These programs conform to the (CF) grammar in the
manual.

o The set of al semantically correct Pascal programs can be generated by a CS
grammar (although a VW grammar would be more practical). These are the

T We use the programming language Pascal here because we expect that most of our readers will
be more or less familiar with it. Any programming language for which the manual gives a CF
grammar will do.

Sec. 2.10] A metaphorical comparison of grammar types 61

Figure 2.29 The silhouette of a rose, approximated by Type 3 to Type O grammars

programs that pass through a Pascal compiler without drawing error messages.

o Theset of all Pascal programs that would terminate in finite time when run with a
given input can be generated by an unrestricted phrase structure grammar. Such a
grammar would, however, be very complicated, even in van Wijngaarden form,
since it would incorporate detailed descriptions of the Pascal library routines and
the Pascal run-time system.

o The set of al Pasca programs that solve a given problem (for instance, play
chess) cannot be generated by a grammar (although the description of the set is
finite).

Note that each of the above setsis a subset of the previous set.

3

Introduction to parsing

To parse a string according to a grammar means to reconstruct the production tree (or
trees) that indicate how the given string can be produced from the given grammar.
There are two important points here; one is that we do require the entire production tree
and the other is that there may be more than one such tree.

The requirement to recover the production tree is not natural. After al, a grammar
is a condensed description of a set of strings, i.e., alanguage, and our input string either
belongs or does not belong to that language; no internal structure or production path is
involved. If we adhere to this formal view, the only meaningful question we can ask is
if a given string can be recognized according to a grammar; any question as to how,
would be a sign of senseless, even morbid curiosity. In practice, however, grammars
have semantics attached to them; specific semantics is attached to specific rules, and in
order to find out which rules were involved in the production of a string and how, we
need the production tree. Recognition is (often) not enough, we need parsing to get the
full benefit of the syntactic approach.

3.1 VARIOUSKINDS OF AMBIGUITY

A sentence from a grammar can easily have more than one production tree, i.e., there
can easily be more than one way to produce the sentence. From a formal point of view
this is again a non-issue (a set does not count how many times it contains an element),
but as soon as we are interested in the semantics, the difference becomes significant.
Not surprisingly, a sentence with more than one production tree is called ambiguous,
but we must immediately distinguish between essential ambiguity and spurious ambi-
guity. The difference comes from the fact that we are not interested in the production
trees per se, but rather in the semantics they describe. An ambiguous sentence is spuri-
ously ambiguous if all its production trees describe the same semantics; if some of
them differ in their semantics, the ambiguity is essential. The notion “ambiguity” can
also be defined for grammars. a grammar is essentially ambiguous if it can produce an
essentially ambiguous sentence, spuriously ambiguous if it can produce a spuriously
ambiguous sentence (but not an essentially ambiguous one) and unambiguous if it can-
not do either. Strangely enough, languages also can be ambiguous: there are (context-
free) languages for which there is no unambiguous grammar; such languages belong in
aresearch lab, in acage. For testing the possible ambiguity of a grammar, see Section

Sec. 3.1] Various kinds of ambiguity 63

9.10.
1. Sumy -> Dgit { Api=A1 }
2. Sum -> Sum+ Sum { Agi=A;t+A3 }
3a Dgt -> 0 { Ap:=0}
3. Dgt -> 9 { Ap:=9 }

Figure 3.1 A simple ambiguous grammar

A simple ambiguous grammar is given in Figure 3.1. Note that rule 2 differs from
that in Figure 2.26. Now 3+5+1 has two production trees (Figure 3.2) but the semantics
is the same in both cases: 9. The ambiguity is spurious. If we change the + into a -,
however, the ambiguity becomes essential, Figure 3.3. The unambiguous grammar in
Figure 2.26 remains unambiguous and retains the correct semantics if + is changed into

Figure 3.3 Essential ambiguity: the semantics differ

64 Introduction to parsing [Ch.3

3.2 LINEARIZATION OF THE PARSE TREE

Often it is inconvenient and unnecessary to construct the actual production tree: many
parsers produce a list of rule numbers instead, which means that they linearize the
parse tree. There are three main ways to linearize a tree, prefix, postfix and infix. In
prefix notation, each node is listed by listing its number followed by prefix listings of
the subnodes in left-to-right order; this gives us the left-most derivation (for the right
treein Figure 3.2):

left-most: 2 21 3¢ 131 3a

In postfix notation, each node is listed by listing in postfix notation all the subnodes in
left-to-right order, followed by the number of the rule in the node itself; this gives us
the right-most derivation (for the same tree):

right-most: 3c 1 3e123a1l12

In infix notation, each nodeis listed by first giving an infix listing between parentheses
of the first n subnodes, followed by the rule number in the node, followed by an infix
listing between parentheses of the remainder of the subnodes; n can be chosen freely
and can even differ from rule to rule, but n=1is normal. Infix notation is not common
for derivations, but is occasionally useful. The case with n=1 is called the left-corner
derivation; in our example we get:

left-corner: (((3c)1) 2 ((3e)1) 2 ((3a)1)

The infix notation requires parentheses to enable us to reconstruct the production tree
from it. The left-most and right-most derivations can do without, provided we have the
grammar ready to find the number of subnodes for each node. Note that it is easy to tell
if aderivation isleft-most or right-most: aleft-most derivation starts with arule for the
start symbol, a right-most derivation starts with a rule that produces terminal symbols
only (if both conditions hold, there is only one rule, which is both left-most and right-
most derivation).

The existence of several different derivations should not be confused with ambi-
guity. The different derivations are just notational variants for one and the same pro-
duction tree. No semantic significance can be attached to their differences.

3.3 TWOWAYSTO PARSE A SENTENCE

The basic connection between a sentence and the grammar it derives from is the parse
tree, which describes how the grammar was used to produce the sentence. For the
reconstruction of this connection we need a parsing technique. When we consult the
extensive literature on parsing techniques, we seem to find dozens of them, yet there
are only two techniques to do parsing; al the rest istechnical detail and embellishment.

The first method tries to imitate the original production process by rederiving the
sentence from the start symbol. This method is called top-down, because the production
tree is reconstructed from the top downwards. T

T Trees grow from their roots downwards in computer science; this is comparable to electrons

Sec. 3.3] Two ways to parse a sentence 65

The second methods tries to roll back the production process and to reduce the
sentence back to the start symbol. Quite naturally this technique is called bottom-up.

3.3.1 Top-down parsing
Suppose we have the monotonic grammar for the language a"b"c" from Figure 2.6,
which we repeat here:

-> aSQ
S -> abc
bQ -> bbcc

cQ ->

and suppose the (input) sentence isaabbcc. First we try the top-down parsing method.
We know that the production tree must start with the start symbol:

@ v

Now what could the second step be? We have two rules for S: S >aSQand S- >abc.
The second rule would require the sentence to start with ab, which it does not; this

This gives us a good explanation of the first a in our sentence. Again two rules apply:
S >aSQ and S >abc. Some reflection will revea that the first rule would be a bad
choice here: all production rules of S start with an a, and if we would advance to the
stage aaSQQ the next step would inevitably lead to aaa. . . . , which contradicts the
input string. The second rule, however, is not without problems either:

©
@ 5 ©
@@ ®©© @

since now the sentence starts with aabc. . . , which aso contradicts the input sentence.
Here, however, thereisaway out: cQ >(:

having a negative charge in physics.

66 Introduction to parsing [Ch.3

Now only one rule applies: bQc->bbcc, and we obtain our input sentence (together
with the production tree):

Top-down parsing tends to identify the production rules (and thus to characterize
the parse tree) in prefix order.

3.3.2 Bottom-up parsing

Using the bottom-up technique, we proceed as follows. One production step must have
been the last and its result must still be visible in the string. We recognize the right-
hand side of bQc- >bbcc inaabbcc. This gives usthefina step in the production (and
the first in the reduction):

2 S
@ (@ (Bb) (e

Now we recognize the ¢ as derived by cQ >

Again we find only one recognizable substring: abc:

Sec. 3.3] Two ways to parse a sentence 67

Bottom-up parsing tends to identify the production rules in postfix order. It is
interesting to note that bottom-up parsing turns the parsing process into a production
process. The above reduction can be viewed as a production with the reversed gram-
mar:

asQ -> S
abc -> S
bbcc -> bQ

@ -> cQ

augmented with arule that turns the start symbol into a new terminal symbol:
s -> |

and arule which introduces a new start symbol, the original sentence:

lg -> aabbcc
If, starting from | , we can produce ! we have recognized the input string, and if we
have kept records of what we did, we also have obtained the parse tree.

3.3.3 Applicability

The above examples show that both the top-down and the bottom-up method will work
under certain circumstances, but also that sometimes quite subtle considerations are
involved, of which it isnot at al clear how we can teach them to a computer. Almost
the entire body of parser literature is concerned with formalizing these subtle

68 Introduction to parsing [Ch.3

considerations, and with considerable success.

Note: It is aso possible to reconstruct some parts of the production tree top-down
and other parts bottom-up. Such methods identify the production rules in some infix
order and are called left-corner.

3.4 NON-DETERMINISTIC AUTOMATA

Both examples above feature two components: a machine that can make substitutions
and record a parse tree, and a control mechanism that decides which moves the
machine should make. The machine is relatively simple since its substitutions are res-
tricted to those allowed by the grammar, but the control mechanism can be made arbi-
trarily complex and may incorporate extensive knowledge of the grammar.

This structure can be discerned in all parsing methods; there always is a substitut-
ing and record-keeping machine and a guiding control mechanism (Figure 3.4).

substituting and
record-keeping
mechanism

control
mechanism

Figure 3.4 Global structure of a parser

The substituting machine is called a non-deterministic automaton or NDA; it is called
“non-deterministic” since it often has several possible moves and the particular choice
is not predetermined, and an “automaton” since it fits the WebsterT definition “an
apparatus that automatically performs certain actions by responding to preset controls
or encoded instructions’. It manages three items: the input string (actually a copy of
it), the partia parse tree and some internal administration. Every move of the NDA
transfers some information from the input string through the administration to the par-
tial parse tree; each of the three items may be modified in the process:

partial
parse control input
trees

internal
administration

The great strength of a NDA, and the main source of its usefulness, is that it can
easily be constructed so that it can only make “correct” moves, that is, moves that keep

T Webster’s Ne\T Twentieth Century Dictionary, The World Publ. Comp., Cleveland, 1970.

Sec. 3.4] Non-deter ministic automata 69

the system of partialy processed input, internal administration and partial parse tree
consistent. This has the consequence that we may move the NDA any way we choose:
it may move in circles, it may even get stuck, but if it ever gives us an answer, i.e, a
finished parse tree, that answer will be correct. It is also essential that the NDA can
make all correct moves, so that it can produce al parsings if the control mechanism is
clever enough to guide the NDA there. This property of the NDA is aso easily
arranged.

The inherent correctness of the NDA allows great freedom to the control mechan-
ism, the “control” for short. It may be naive or sophisticated, it may be cumbersome or
it may be efficient, it may even be wrong, but it can never cause the NDA to produce
an incorrect parsing; and that is a comforting thought. (If it is wrong it may, however,
cause the NDA to miss a correct parsing, to loop infinitely or to get stuck in a place
where it should not).

3.4.1 Constructing the NDA

The NDA derives directly from the grammar. For a top-down parser its moves consist
essentially of the production rules of the grammar and the internal administration isini-
tially the start symbol. The control moves the machine until the internal administration
is equal to the input string; then a parsing has been found. For a bottom-up parser the
moves consist essentially of the reverse of the production rules of the grammar (see
3.3.2) and the internal administration isinitially the input string. The control moves the
machine until the internal administration is equal to the start symbol; then a parsing has
been found. A left-corner parser works like a top-down parser in which a carefully
chosen set of production rules has been reversed and which has special moves to undo
this reversion when needed.

3.4.2 Constructing the control mechanism

Constructing the control of a parser is quite a different affair. Some controls are
independent of the grammar, some consult the grammar regularly, some use large
tables precalculated from the grammar and some even use tables calculated from the
input string. We shall see examples of each of these: the “hand control” that was
demonstrated at the beginning of this section comes in the category “ consults the gram-
mar regularly”, backtracking parsers often use a grammar-independent control, LL and
LR parsers use precalculated grammar-derived tables, the CYK parser uses a table
derived from the input string and Earley’s and Tomita's parsers use severa tables
derived from the grammar and the input string.

Constructing the control mechanism, including the tables, from the grammar is
almost always done by a program. Such a program is called a parser generator; it isfed
the grammar and perhaps a description of the terminal symbols and produces a program
which is a parser. The parser often consists of adriver and one or more tables, in which
case it is caled table-driven. The tables can be of considerable size and of extreme
complexity.

The tables that derive from the input string must of course be calculated by a rou-
tine that is part of the parser. It should be noted that this reflects the traditional setting
in which a large number of different input strings is parsed according to a relatively
static and unchanging grammar. The inverse situation is not at all unthinkable: many
grammars are tried to explain a given input string (for instance, an observed sequence
of events).

70 Introduction to parsing [Ch.3

3.5 RECOGNITION AND PARSING FORTYPEOTO TYPE 4 GRAMMARS

Parsing a sentence according to a grammar if we know in advance that the string indeed
derives from the grammar, is in principle always possible. If we cannot think of any-
thing better, we can just run the general production process of 2.5.1 on the grammar
and sit back and wait until the sentence turns up (and we know it will); this by itself is
not exactly enough, we must extend the production process a little, so that each senten-
tial form carries its own partial production tree, which must be updated at the appropri-
ate moments, but it is clear that this can be done with some programming effort. We
may have to wait alittle while (say a couple of million years) for the sentence to show
up, but in the end we will surely obtain the parse tree. All this is of course totally
impractical, but it still shows usthat at |east theoretically any string can be parsed if we
know it is parsable, regardliess of the grammar type.

3.5.1 Timerequirements

When parsing strings consisting of more than a few symbols, it is important to have
some idea of the time requirements of the parser, i.e., the dependency of the time
required to finish the parsing on the number of symbols in the input string. Expected
lengths of input range from some tens (sentences in natural languages) to some tens of
thousands (large computer programs); the length of some input strings may even be vir-
tually infinite (the sequence of buttons pushed on a coffee vending machine over its
life-time). The dependency of the time requirements on the input length is also called
time complexity.

Severa characteristic time dependencies can be recognized. A time dependency
is exponential if each following input symbol multiplies the required time by a constant
factor, say 2: each additional input symbol doubles the parsing time. Exponential time
dependency iswritten O(C") where C is the constant multiplication factor. Exponential
dependency occurs in the number of grains doubled on each field of the famous chess
board; this way lies bankrupcy.

A time dependency is linear if each following input symbol takes a constant
amount of time to process; doubling the input length doubles the processing time. This
is the kind of behaviour we like to see in a parser; the time needed for parsing is pro-
portional to the time spent on reading the input. So-called real-time parsers behave
even better: they can produce the parse tree within a constant time after the last input
symbol was read; given a fast enough computer they can keep up indefinitely with an
input stream of constant speed. (Note that the latter is not necessarily true of linear-
time parsers. they can in principle read the entire input of n symbols and then take a
time proportional to n to produce the parse tree.)

Linear time dependency iswritten O(n). A time dependency is called quadratic if
the processing time is proportional to the square of the input length (written O(n?)) and
cubic if it is proportional to the to the third power (written O(n?3)). In general, a depen-
dency that is proportional to any power of nis called polynomial (written O(nP)).

3.5.2 TypeOand Typelgrammars

It is a remarkable result in formal linguistics that the recognition problem for a arbi-
trary Type O grammar cannot be solved. This means that there cannot be an algorithm
that accepts an arbitrary Type O grammar and an arbitrary string and tells us in finite
time if the grammar can produce the string or not. This statement can be proven, but the
proof is very intimidating and, what is worse, does not provide any insight into the

Sec. 3.5] Recognition and parsing for Type Oto Type4 grammars 71

cause of the phenomenon. It is a proof by contradiction: we can prove that, if such an
algorithm existed, we could construct a second algorithm of which we can prove that it
only terminates if it never terminates. Since the latter is a logical impossibility and
since all other premisses that went into the intermediate proof are logicaly sound we
are forced to conclude that our initial premiss, the existence of arecognizer for Type O
grammars, is alogica impossibility. Convincing, but not food for the soul. For the full
proof see Hopcroft and Ullman [Books 1979, pp. 182-183] or Révész [Books 1985, p.
9.

It is quite possible to construct a recognizer that works for a certain number of
Type 0 grammars, using a certain technique. This technique, however, will not work
for al Type O grammars. In fact, however many techniques we collect, there will
always be grammars for which they do not work. In a sense we just cannot make our
recognizer complicated enough.

For Type 1 grammars, the situation is completely different. The seemingly incon-
sequential property that Type 1 production rules cannot make a sentential form shrink
allows us to construct a control mechanism for a bottom-up NDA that will at least
work in principle, regardless of the grammar. The internal administration of this control
consists of a set of sentential forms that could have played a role in the production of
the input sentence; it starts off containing only the input sentence. Each move of the
NDA is a reduction according to the grammar. Now the control applies all possible
moves of the NDA to al sentential forms in the internal administration in an arbitrary
order, and adds each result to the internal administration if it is not already there. It
continues doing so until each move on each sentential form results in a sentential form
that has already been found. Since no move of the NDA can make a sentential form
longer (because all right-hand sides are at least as long as their left-hand sides) and
since there are only a finite number of sentential forms as long as or shorter than the
input string, this must eventually happen. Now we search the sentential forms in the
internal administration for one that consists solely of the start symbol; if it is there, we
have recognized the input string, if it is not, the input string does not belong to the
language of the grammar. And if we still remember, in some additional administration,
how we got this start symbol sentential form, we have obtained the parsing. All this
requires alot of book-keeping, which we are not going to discuss, since nobody does it
this way anyway.

To summarize the above, we cannot always construct a parser for a Type 0 gram-
mar, but for a Type 1 grammar we always can. The construction of a practical and rea-
sonably efficient parser for such grammars is a very difficult subject on which slow but
steady progress has been made during the last 20 years (see the bibliography on
“Unrestricted PS and CS Grammars’). It is not a hot research topic, mainly because
Type 0 and Type 1 grammars are well-known to be human-unfriendly and will never
see wide application. Yet it is not completely devoid of usefulness, since a good parser
for Type O grammars would probably make a good starting point for a theorem prover.

The human-unfriendliness consideration does not apply to two-level grammars.
Having a practical parser for two-level grammars would be marvellous, since it would
allow parsing techniques (with al their built-in automation) to be applied in many more

T A theorem prover is a program that, given a set of axioms and a theorem, proves or disproves
the theorem without or with minimal human intervention.

72 Introduction to parsing [Ch.3

areas than today, especiadly there where context conditions are important. The prob-
lems in constructing such a parser are at least as great as those seen above, but Fisher
[VW 1985] has obtained some encouraging results.

All known parsing algorithms for Type O, Type 1 and unrestricted VW grammars
have exponential time dependency.

3.5.3 Type2grammars
Fortunately, much better parsing algorithms are known for CF (Type 2) grammars than
for Type 0 and Type 1. Almost all practical parsing is done using CF and FS grammars,
and almost all problems in context-free parsing have been solved. The cause of this
large difference can be found in the locality of the CF production process:. the evolution
of one non-terminal in the sentential form is totally independent of the evolution of any
other non-terminal, and, conversely, during parsing we can combine partial parse trees
regardless of their histories. Neither istrue in a context-sensitive grammar.

Both the top-down and the bottom-up parsing processes are readily applicable to
CF grammars. In the examples below we shall use the ssmple grammar

Sent enceg -> Subject Verb (bject

Subj ect -> the Noun | a Noun | ProperNane
M ect -> the Noun | a Noun | ProperNanme
Verb -> bit | chased

Noun -> cat | dog
ProperNane -> ...

3.5.3.1 Top-down parsing

In top-down parsing we start with the start symbol and try to produce the input. The
keywords here are predict and match. At any time there is a left-most non-terminal A
in the sentential form and the parser tries systematically to predict afitting alternative
for A, asfar as compatible with the symbols found in the input at the position where the
result of A could start. Consider the example of Figure 3.5, where (bj ect is the left-
most non-terminal.

Input: the cat bi t a dog
Sententia form: the cat bi t b ect
(the internal administration)

Figure 3.5 Top-down parsing as the imitation of the production process

In this situation, the parser will first predict t he Noun for Cbj ect , but will immedi-
ately regject this alternative since it requires t he where the input has a. Next, it will try
a Noun, which is temporarily accepted. The a is matched and the new left-most non-
terminal is Noun. This parse will succeed when Noun eventually produces dog. The
parser will then attempt a third prediction for Cbj ect , Pr oper Nane; this alternative is
not immediately rejected as the parser cannot see that Pr oper Name cannot start with a.
It will fail at alater stage.

There are two serious problems with this approach. Although it can, in principle,
handle arbitrary CF grammars, it will loop on some grammars if implemented naively.
This can be avoided by using some special techniques, which result in general top-

Sec. 3.5] Recognition and parsing for TypeOto Type 4 grammars 73

down parsers; these are treated in detail in Chapter 6. The second problem is that the
algorithm requires exponential time since any of the predictions may turn out wrong
and may have to be corrected by trial and error. The above example shows that some
efficiency can be gained by preprocessing the grammar: it is advantageous to know in
advance what tokens can start Pr oper Nare, to avoid predicting an aternative that is
doomed in advance. Thisistrue for most non-terminals in the grammar and this kind of
information can be easily calculated from the grammar and stored in a table for use
during parsing. For a reasonable set of grammars, linear time dependency can be
achieved, as explained in Chapter 8.

3.5.3.2 Bottom-up parsing

In bottom-up parsing we start with the input and try to reduce it to the start symbol.
Here the keywords are shift and reduce. When we are in the middle of the process, we
have in our hands a sentential form reduced from the input. Somewhere in this senten-
tial form there must be a segment (a substring) that was the result of the last production
step that produced this sentential form; this segment is the right-hand side of a non-
terminal to which it must now be reduced. This segment is called the handle of the sen-
tential form, a quite adequate expression. See Figure 3.6. The trick isto find the handle.
It must be the right-hand side of arule, so we start looking for such a right-hand side by
shifting symbols from the sentential form into the internal administration. When we
find aright-hand side we reduce it to its |eft-hand side and repeat the process, until only
the start symbol is left. We will not always find the correct handle this way; if we err,
we will get stuck further on, will have to undo some steps, shift in more symbols and
try again. In the above example we could have reduced thea Noun to (bj ect , thereby
boldly heading for a dead end.

Subj ect chased a dog
a Noun chased a dog

handlé

production ¢ ? reduction

Figure 3.6 Bottom-up parsing as the inversion of the production process

There are essentialy the same two problems with this approach as with the top-
down technique. It may loop, and will do so on grammars with g-rules: it will continue
to find empty productions al over the place. This can be remedied by touching up the
grammar. And it can take exponential time, since the correct identification of the han-
dle may have to be done by trial and error. Again, doing preprocessing on the grammar
often helps: it is easy to see from the grammar that Subj ect can be followed by
chased, but (bj ect cannot; so it is unprofitable to reduce a handle to Cbj ect if the
next symbol ischased.

3.54 Type3grammars

A right-hand side in a regular grammar contains at most one non-terminal, so there is
no difference between left-most and right-most production. Top-down methods are
much more efficient for regular grammars than bottom-up methods.” When we take the

T Some regular grammars have, however, rules of the form A - aand A - Ba (and no others); in
that case bottom-up methods work better.

74 Introduction to parsing [Ch.3

production tree of Figure 2.14 and if we turn it 45° counterclockwise, we get the pro-
duction line of Figure 3.7. The sequence of non-terminalsroll on to the right, producing
terminals symbols as they go. In parsing, we are given the terminals symbols and are
supposed to construct the sequence of non-terminals. The first one is given, the start
symbol (hence the preference for top-down). If only one rule for the start symbol starts
with the first symbol of the input we are lucky and know which way to go. Very often,
however, there are many rules starting with the same symbol and then we are in need of
more wisdom. As with Type 2 grammars, we can of course find the correct continua-
tion by trial and error, but far more efficient methods exist that can handle any regular
grammar. Since they form the basis of some advanced parsing techniques, they are
treated separately, in Chapter 5.

oty —~(tist =Gt~ list Gt
O O O ©® O

Figure 3.7 The production tree of Figure 2.14 as a production line

3.55 Typedgrammars
Finite-choice (FC) grammars do not involve production trees, and membership of a
given input string to the language of the FC grammar can be determined by simple
look-up. Thislook-up is generally not considered to be “parsing”, but is still mentioned
here for two reasons. First it can benefit from parsing techniques and second it is often
required in a parsing environment. Natural languages have some categories of words
that have only a very limited number of members, examples are the pronouns, the
prepositions and the conjunctions. It is often important to decide quickly if a given
word belongs to one of these finite-choice categories or will have to be analysed
further. The same applies to reserved words in a programming language.

One approach is to consider the FC grammar as a regular grammar and apply the
techniques of Chapter 5. Thisis often amazingly efficient.

A second often-used approach is that using a hash table. See any book on ago-
rithms, for instance, Smith [CSBooks 1989].

3.6 AN OVERVIEW OF PARSING METHODS

The reader of literature about parsing is confronted with a large number of techniques
with often unclear interrelationships. Yet (almost) all techniques can be placed in asin-
gle framework, according to some simple criteria; see Figure 3.10. We have aready
seen that a parsing technique is either top-down or bottom-up. The next division is that
between non-directional and directional.

3.6.1 Directionality

A non-directional method constructs the parse tree while accessing the input in any
order it sees fit; this of course requires the entire input to be in memory before parsing
can start. There is atop-down and a bottom-up version.

Sec. 3.6] An overview of parsing methods 75

3.6.1.1 Non-directional methods
The non-directional top-down method is simple and straightforward and has probably
been invented independently by many people. It was first described by Unger [CF
1968] but in his article he gives the impression that the method already existed. The
method has not received much attention in the literature but is more important than one
might think, since it is used anonymously in a number of other parsers. We shall call it
Unger’s method; it is treated in Section 4.1.

The non-directional bottom-up method has also been discovered independently by
a number of people, among whom Cocke, Y ounger [CF 1967] and Kasami [CF 1969];
an earlier description is by Sakai [CF 1962]. It is nhamed CYK (or sometimes CKY)
after the three best-known inventors. It has received considerable attention since its
naive implementation is much more efficient than that of Unger’s method. The effi-
ciency of both methods can be improved, however, arriving at roughly the same perfor-
mance (see Sheil [CF 1976]). The CYK method istreated in Section 4.2.

3.6.1.2 Directional methods

The directional methods process the input symbol by symbol, from left to right. (It is
also possible to parse from right to left, using a mirror image of the grammar; this is
occasionally useful.) This has the advantage that parsing can start, and indeed progress,
considerably before the last symbol of the input is seen. The directional methods are all
based explicitly or implicitly on the parsing automaton described in Section 3.5.3,
where the top-down method performs predictions and matches and the bottom-up
method performs shifts and reduces.

3.6.2 Search techniques
The next subdivision concerns the search technique used to guide the (non-
deterministic!) parsing automaton through all its possibilities to find one or al parsings.

There are in general two methods for solving problems in which there are several
aternatives in well-determined points: depth-first search, and breadth-first search. In
depth-first search we concentrate on one half-solved problem; if the problem bifurcates
at a given point P, we store one aternative for later processing and keep concentrating
on the other aternative. If this alternative turns out to be a failure (or even a success,
but we want all solutions), we roll back our actions until point P and continue with the
stored alternative. Thisis called backtracking. In breadth-first search we keep a set of
half-solved problems. From this set we calculate a new set of (better) half-solved prob-
lems by examining each old half-solved problem; for each aternative, we create a copy
in the new set. Eventualy, the set will come to contain all solutions.

Depth-first search has the advantage that it requires an amount of memory that is
proportional to the size of the problem, unlike breadth-first search, which may require
exponential memory. Breadth-first search has the advantage that it will find the sim-
plest solution first. Both methods require in principle exponential time; if we want
more efficiency (and exponential requirements are virtually unacceptable), we need
some means to restrict the search. See any book on algorithms, for instance,
Sedgewick [CSBooks 1988], for more information on search techniques.

These search techniques are not at all restricted to parsing and can be used in a
wide array of contexts. A traditional oneis that of finding an exit from amaze. Figure
3.8(a) shows a simple maze with one entrance and two exits. Figure 3.8(b) depicts the
path a depth-first search will take; this is the only option for the human maze-walker:

76 Introduction to parsing [Ch.3

he cannot duplicate himself and the maze. Dead ends make the depth-first search back-
track to the most recent untried alternative. If the searcher will also backtrack at each
exit, he will find all exits. Figure 3.8(c) shows which rooms are examined in each
stage of the breadth-first search. Dead ends (in stage 3) cause the search branches in
question to be discarded. Breadth-first search will find the shortest way to an exit (the
shortest solution) first; if it continues until all there are no branches left, it will find all
exits (al solutions).

T
El

" (@

S 5
:: 3/4|5 6-—

3 4
2 3

2
1
0
" ©

Figure 3.8 A simple maze with depth-first and breadth-first visits

3.6.3 General directional methods

Combining depth-first or breadth-first with top-down or bottom-up gives four classes
of parsing techniques. The top-down techniques are treated in Chapter 6. The depth-
first top-down technique allows a very ssmple implementation called recursive descent;
this technique, which is explained in Section 6.6, is very suitable for writing parsers by
hand. The bottom-up techniques are treated in Chapter 7. The combination of breadth-
first and bottom-up leads to the class of Earley parsers, which have among them some
very effective and popular parsers for general CF grammars. See Section 7.2.

3.6.4 Linear methods

Most of the general search methods indicated in the previous paragraph have exponen-
tial time dependency in the worst case: each symbol more in the input multiplies the
parsing time by a constant factor. Such methods are unusable except for very small
input length, where 20 symbols is about the maximum. Even the best of the above
methods require cubic time in the worst case: for 10 tokens they do 1000 actions, for
100 tokens 1000 000 actions and for 1000 tokens 1 000 000 000 actions, which, at 10
microseconds per action will already take almost 3 hours. It is clear that for real speed
we should like to have a linear-time general parsing method. Unfortunately no such
method has been discovered to date. On the other hand, there is no proof and not even
an indication that such a method could not exist. (Compare this to the situation around
unrestricted phrase structure parsing, where it has been proved that no algorithm for it
can exist; see Section 3.5.2.) Worse even, nobody has ever come up with a specific CF
grammar for which no ad hoc linear-time parser could be designed. The only thing is
that we have at present no way to construct such a parser in the general case. Thisisa
theoretically and practically unsatisfactory state of affairs that awaits further clarifica-
tion.

T There is atfgwetically interesting but impractical method by Valiant [CF 1975] which does
general CF parsing in O(n?8!). Since this is only very slightly better than O(n®%) and since

Sec. 3.6] An overview of parsing methods 77

In the meantime (and perhaps forever), we shall have to drop one of the two
adjectives from our goal, a linear-time general parser. We can have a general parser,
which will need cubic time at best, or we can have a linear-time parser, which will not
be able to handle all CF grammars, but not both. Fortunately there are parsing methods
(in particular LR parsing) that can handle very large classes of grammars but still, a
grammar that is designed without regard for a parsing method and just describes the
intended language in the most natural way has a small chance of allowing linear pars-
ing automatically. In practice, grammars are often first designed for naturalness and
then adjusted by hand to conform to the requirements of an existing parsing method.
Such an adjustment is usualy relatively ssmple, depending on the parsing method
chosen. In short, making a linear-time parser for an arbitrary given grammar is 10%
hard work; the other 90% can be done by computer.

We can achieve linear parsing time by restricting the number of possible moves of
our non-deterministic parsing automaton to one in each situation. Since the moves of
such an automaton involve no choice, it is called a deterministic automaton.

The moves of a deterministic automaton are determined unambiguously by the
input stream (we can speak of a stream now, since the automaton operates from left to
right); as a result it can give only one parsing for a sentence. This is al right if the
grammar is unambiguous, but if it is not, the act of making the automaton deterministic
has pinned us down to one specific parsing; we shal say more about this in Section
9.6.5.

All that remains is to explain how a deterministic control mechanism for a parsing
automaton can be derived from a grammar. Since there is no single good solution to the
problem, it is not surprising that quite a number of sub-optimal solutions have been
found. From a very global point of view they all use the same technique: they analyse
the grammar in depth to bring to the surface information that can be used to identify
dead ends. These are then closed. If the method, applied to a grammar, closes enough
dead ends so that no choices remain, the method succeeds for that grammar and gives
us a linear-time parser. Otherwise it fails and we either have to look for a different
method or adapt our grammar to the method.

A (limited) analogy with the maze problem can perhaps make this clearer. If we
are alowed to do preprocessing on the maze (unlikely but instructive) the following
method will often make our search through it deterministic. We assume that the maze
consists of agrid of square rooms; see Figure 3.9(a). Now, if there is aroom with three
walls, add the fourth wall. Continue with this process until no rooms with three walls
are left. If all rooms now have either two or four walls, there are no choices left and our
method has succeeded; see Figure 3.9(b, ¢). We see how this method brings informa-
tion about dead ends to the surface, to help restricting the choice.

It should be pointed out that the above analogy is a limited one. It is concerned
with only one object, the maze, which is preprocessed. In parsing we are concerned
with two objects, the grammar, which is static and can be preprocessed, and the input,
which varies.

Returning to the parsing automaton, we can state the fact that it is deterministic

the actions reqTired are very complicated and time-consuming, Valiant’s algorithm is better
only for inputs of millions of symbols. Also, asit is a non-directional method, it would require
all these symbolsto be in memory.

78 Introduction to parsing [Ch.3

i

" (@ ©

Figure 3.9 A single-exit maze made deterministic by preprocessing

more precisely: a parsing automaton is deterministic with look-ahead k if its control
can, given the internal administration and the next k symbols of the input, decide unam-
biguously what to do next (to either match or predict and what to predict in the top-
down case, and to either shift or reduce and how to reduce in the bottom-up case). Like
grammar types, linear parsing methods are indicated by initials, like LL, LALR etc. If a
method X uses alook-ahead of k symbolsit is called X (k).

3.6.5 Linear top-down and bottom-up methods

There is only one linear top-down method, called LL; the first L stands for Left-to-
right, the second for “identifying the Left-most production”, as directional top-down
parsers do. LL parsing is treated in Chapter 8. LL parsing, especialy LL(1) is very
popular. LL(1) parsers are often generated by a parser generator but a smple variant
can, with some effort, be written by hand, using recursive-descent techniques; see Sec-
tion 8.2.6. Occasionally, the LL(1) method is used starting from the last token of the
input backwards; it isthen called RR(1).

There are quite a variety of linear bottom-up methods, the most powerful being
caled LR, where again the L stand for Left-to-right and the R stand for “identifying the
Right-most production”. Linear bottom-up methods are treated in Chapter 9. Their
parsers are invariably generated by a parser generator: the control mechanism of such a
parser is so complicated that it is not humanly possible to construct it by hand. Some of
the linear bottom-up methods are very popular and are perhaps used even more widely
than the LL(1) method. LR(1) parsing is more powerful than LL(1) parsing, but also
more difficult to understand and less convenient. The other methods cannot be com-
pared easily to the LL(1) method. See Chapter 12 for a comparison of practical parsing
methods. The LR(1) method can also be applied backwards and is then called RL(1).

The great difference in variety between top-down and bottom-up methods is easily
understood when we look more closely at the choices the corresponding parsers face. A
top-down parser has by nature little choice: if aterminal symbol is predicted, it has no
choice and can only ascertain that a match is present; only if a non-terminal is predicted
it has a choice in the production of that non-terminal. A bottom-up parser can aways
shift the next input symbol, even if a reduction is also possible (and it often has to do
s0). If, in addition, a reduction is possible, it may have a choice between a number of
right-hand sides. In general it has more choice than atop-down parser and more power-
ful methods are needed to make it deterministic.

Sec. 3.6] An overview of parsing methods 79

3.6.6 Almost deterministic methods

When our attempt to construct a deterministic control for a parser fails and leaves us
with an amost deterministic one, we need not despair yet. We can fall back on
breadth-first search to solve the remnants of non-determinism at run-time. The better
our original method was, the less non-determinism will be left, the less often breadth-
first search will be needed and the more efficient our parser will be. This avenue of
thought has been explored for bottom-up parsers by Tomita [CF 1986], who achieves
with it what is probably the best general CF parser available today.

Of course, by reintroducing breadth-first search we are taking chances. The gram-
mar and the input could conspire so that the non-determinism gets hit by each input
symbol and our parser will again have exponential time dependency. In practice, how-
ever, they never do so and such parsers are very useful.

Tomita' s parser is treated in Section 9.8. No corresponding research on top-down
parsers has been reported in the literature. This is perhaps due to the fact that no
amount of breadth-first searching can handle left-recursion in a grammar (left-
recursion is explained in Section 6.3.2).

3.6.7 Left-corner parsing

In Section 3.6 we wrote that “amost” all parsing methods could be assigned a place in
Figure 3.10. The principal class of methods that has been left out concerns “left-corner
parsing”. It is a third divison aongside top-down and bottom-up, and since it is a
hybrid between the two it should be assigned a separate column between these.

In left-corner parsing, the right-hand side of each production rule is divided into
two parts: the left part is called the left corner and is identified by bottom-up methods.
The division of the right-hand side is done so that once its left corner has been identi-
fied, parsing of the right part can proceed by a top-down method.

Although left-corner parsing has advantages of its own, it tends to combine the
disadvantages or at least the problems of top-down and bottom-up parsing, and is
hardly used in practice. For this reason it has not been included in Figure 3.10. From a
certain point of view, top-down and bottom-up can each be considered special cases of
left-corner, which gives it some theoretical significance. See Section 13.7 for literature
references.

3.6.8 Conclusion

Figure 3.10 summarizes parsing techniques as they are treated in this book. Nijholt
[Misc 1981] paints a more abstract view of the parsing landscape, based on left-corner
parsing. See Deussen [Misc 1979] for an even more abstracted overview. An early sys-
tematic survey was given by Griffiths and Petrick [CF 1965].

80 Introduction to parsing [Ch.3
Top-down Bottom-up
Non-directional Unger parser CYK parser
methods
The predict/match automaton The shift/reduce automaton

Directional methods

Depth-first search (backtrack)

Breadth-first search
(Greibach)

Recursive descent

Definite Clause grammars

Depth-first search (backtrack)
Breadth-first search
Breadth-first search, restricted

(Earley)

Linear directiona

There is only one top-down
method:

There is awhole gamut of
methods:

methods: LL(k) precedence
breadth-first, with bounded-context
breadth restricted to 1 LR(K)
LALR(2)
SLR(1)
Efficient general (no research reported) Tomita

directional methods;
maximally restricted
breadth-first search

Figure 3.10 An overview of parsing techniques

A

General non-directional methods

In this chapter we will present two general parsing methods, both non-directional:
Unger's method and the CYK method. These methods are called non-directional
because they access the input in an seemingly arbitrary order. They require the entire
input to be in memory before parsing can start.

Unger’s method is top-down; if the input belongs to the language at hand, it must
be derivable from the start symbol of the grammar. Therefore, it must be derivable
from aright-hand side of the start symbol, say A{A, -+ An. This, in turn, means that
A1 must derive afirst part of the input, A, a second part, etc. If the input sentence is
Z1Z, " * Zy, thisdemand can be depicted as follows:

Unger’s method tries to find a partition of the input that fits this demand. This is a
recursive problem: if a non-terminal A; is to derive a certain part of the input, there
must be a partition of this part that fits a right-hand side of A;. Ultimately, such a
right-hand side must consist of terminal symbols only, and these can easily be matched
with the current part of the input.

The CYK method approaches the problem the other way around: it tries to find
occurrences of right-hand sides in the input; whenever it finds one, it makes a note that
the corresponding left-hand side derives this part of the input. Replacing the
occurrence of the right-hand side with the corresponding left-hand side results in some
sentential forms that derive the input. These sentential forms are again the subject of a
search for right-hand sides, etc. Ultimately, we may find a sentential form that both
derives the input sentence and is aright-hand side of the start symbol.

In the next two sections, these methods are investigated in detail.

82 General non-directional methods [Ch. 4

4.1 UNGER’S PARSING METHOD

The input to Unger’s parsing method [CF 1968] consists of a CF grammar and an input
sentence. We will first discuss Unger’'s parsing method for grammars without e-rules
and without loops (see Section 2.8.4). Then, the problems introduced by e-rules will be
discussed, and the parsing method will be modified to allow for all CF grammars.

4.1.1 Unger’s method without e-rules or loops
To see how Unger’s method solves the parsing problem, let us consider a small exam-
ple. Suppose we have agrammar rule

S_ ABC | DE | F

and we want to find out whether S derives the input sentence pgrs. The initia parsing
problem can then be schematically represented as:

S
pars

For each right-hand side we must first generate all possible partitions of the input sen-
tence. Generating partitions is not difficult: if we have m cups, numbered from 1 to m,
and n marbles, numbered from 1 to n, we have to find all possible partitions such that
each cup contains at least one marble, the numbers of the marbles in any cup are con-
secutive, and any cup does not contain lower-numbered marbles than any marble in a
lower-numbered cup. We proceed as follows: first, we put marble 1 in cup 1, and then
generate all partitions of the other n—1 marbles over the other m—1 cups. This gives us
al partitions that have marble 1 in the first cup. Next, we put marbles 1 and 2 in the
first cup, and then generate all partitions of the other n—2 marbles over the other m-1
cups, etc. If nislessthan m, no partition is possible.

Partitioning the input corresponds to partitioning the marbles (the input symbols)
over the cups (the right-hand side symbols). If aright-hand side has more symbols than
the sentence, no partition can be found (there being no -rules). For the first right-hand
side the following partitions must be tried:

S
A | B |C
p q |rs
p gr | s
pg | r S

The first partition results in the following sub-problems: does A derive p, does B derive
g, and does C derive rs? These sub-problems must all be answered in the affirmative,
or the partition is not the right one.

For the second right-hand side, we obtain the following partitions:

Sec. 4.1] Unger’s parsing method 83

S
D E
p ars
pq | rs
par | s

The last right-hand side results in the following partition:

S
=

pars

All these sub-problems deal with shorter sentences, except the last one. They will
al lead to similar split-ups, and in the end many will fail because atermina symbol in
aright-hand side does not match the corresponding part of the partition. The only par-
tition that causes some concern is the last one. It is as complicated as the one we started
with. This is the reason that we have disallowed loops in the grammar. If the grammar
has loops, we may get the origina problem back again and again. For instance, if there
isarule F - Sin the example above, this will certainly happen.

The above demonstrates that we have a search problem here, and we can attack it
with either the depth-first or the breadth-first search technique (see Section 3.6.2).
Unger uses depth-first search.

In the following discussion, the grammar of Figure 4.1 will serve as an example.

Exprg -> Expr + Term| Term
Term -> Termx Factor | Factor
Factor -> (Epr) | i

Figure 4.1 A grammar describing simple arithmetic expressions
This grammar represents the language of simple arithmetic expressions, with operators

+ and x, and operand i . We will use the sentence (i +i) Xi asinput example. So, the
initial problem can be represented as:

Expr
(i +i)xi

Fitting the first right-hand side of Expr with the input results in the following parti-
tions:

84 General non-directional methods [Ch. 4

Expr

Expr + Term
(i +H) xi
(i + i) xi
(| +i) Xi
(i+) X

(iH)x | i

(i + i) xi
(i +i) Xi
(i +) X

(i +H) x i

(i + i) Xi
(i+ i) X

(i + i) x i

(i +i) X

(i +i) x i
(i+i) X i

Even asmall example like this aready results in 15 partitions, and we will not examine
them all here, although the unoptimized version of the algorithm requires this. We will
only examine the partitions that have at least some chance of succeeding: we can €lim-
inate all partitions that do not match the terminal symbol of the right-hand side. So, the
only partition worth investigating further is:

Expr
Expr + | Term
(i + |)X

The first sub-problem here is to find out whether and, if so, how Expr derives (i . We
cannot partition (i into three non-empty parts because it only consists of 2 symbols.
Therefore, the only rule that we can apply is the rule Expr -> Ter m Similarly, the
only rule that we can apply next isthe rule Ter m - > Fact or . So, we now have

Expr
Term
Fact or

(i

However, this isimpossible, because the first right-hand side of Fact or has too many
symbols, and the second one consists of one terminal symbol only. Therefore, the par-
tition we started with does not fit, and it must be rejected. The other partitions were
already rejected, so we can conclude that the rule Expr -> Expr + Ter mdoes not
derive the input.

The second right-hand side of Expr consists of only one symbol, so we only have
one partition here, consisting of one part. Partitioning this part for the first right-hand
side of Ter magain results in 15 possibilities, of which again only one has a chance of

Sec. 4.1] Unger’s parsing method 85

succeeding:
Expr
Term
Term | x | Factor
(i+i) | x|

Continuing our search, we will find the following derivation:

Expr ->

Term ->

Term x Factor ->

Factor x Factor ->

(Expr) x Factor ->

(Expr + Term) x Factor ->
(Term+ Term) x Factor ->
(Factor + Term) x Factor ->
(i + Term) x Factor ->
(i + Factor) x Factor ->
(i +i) x Factor ->

(i +i) xi

and thisis the only derivation to be found.

This example demonstrates several aspects of the method: even small examples
require a considerable amount of work, but even some simple checks can result in huge
savings. For instance, matching the terminal symbols in a right-hand side with the par-
tition at hand often leads to the regjection of the partition without investigating it any
further. Unger [CF 1968] presents several more of these checks. For instance, one can
compute the minimum length of strings of terminal symbols derivable from each non-
terminal. Once it is known that a certain non-terminal only derives terminal strings of
length at least n, all partitions that fit this non-terminal with a substring of length less
than n can be immediately rejected.

4.1.2 Unger’s method with e-rules

So far, we only have dealt with grammars without e-rules, and not without reason.
Complications arise when the grammar contains g-rules, as is demonstrated by the fol-
lowing example: consider the grammar rule S— ABC and input sentence pgr. If we
want to examine whether this rule derives the input sentence, and we allow for e-rules,
many more partitions will have to be investigated, because each of the non-terminals A,
B, and C may derive the empty string. In this case, generating all partitions proceeds
just as above, except that we first generate the partitions that have no marble at al in
the first cup, then the partitions that have marble 1 in the first cup, etc.:

86 General non-directional methods [Ch. 4

S
A B C
par
p ar
pg | T
par
Y ar
p q r
Y ar
Pq r
g | r
par

Now suppose that we are investigating whether B derives pgr, and suppose there is a
rule B - SD. Then, we will have to investigate the following partitions:

B
S D
par
p ar
pq | T
par

It is the last of these partitions that will cause trouble: in the process of finding out
whether Sderives pgr, we end up asking the same question again, in a different context.
If we are not careful and do not detect this, our parser will loop forever, or run out of
memory.

When searching along this path, we are looking for a derivation that is using a
loop in the grammar. This may even happen if the grammar does not contain loops. If
this loop actually exists in the grammar, there are infinitely many derivations to be
found along this path, provided that there is one, so we will never be able to present
them all. The only interesting derivations are the ones without the loop. Therefore, we
will cut off the search process in these cases. On the other hand, if the grammar does
not contain such a loop, a cut-off will not do any harm either, because the search is
doomed to fail anyway. So, we can avoid the problem altogether by cutting off the
search process in these cases. Fortunately, thisis not a difficult task. All we have to do
isto maintain a list of questions that we are currently investigating. Before starting to
investigate a new question (for instance “does S derive pgr?’) we first check that the
guestion does not already appear in the list. If it does, we do not investigate this ques-
tion. Instead, we proceed as if the question were answered negatively.

Consider for instance the following grammar:

S -> LSD| ¢
L -> ¢
D -> d

This grammar generates sequences of d’sin an awkward way. The complete search for

Sec. 4.1] Unger’s parsing method 87

the questionsS ™= d?and S ™= dd? isdepicted in Figure 4.2.

€% g? |yes

L sbD @ €% g? |yes
@ cut-off: no

€% €? |yes
L S D = d? |yes

*, €?
S 4 - €% g? |yes

d - - cut-off: no

€< d? |no

€% d? |no

€% g? |yes

L S D
cut-off: no

€% g? |yes

*, dd? |no

€% €? |yes

TR

L S D
. dd see above, yes
- d d *, d? |yes
- dd- £* €? |yes
d - d
@ 4 d - cut—off: no
dd - - @ £* d? |no
@ e* d? |no
€™ dd?|no
@ € * dd? no

Figure 4.2 Unger’s parser at work for the sentencesd and dd

Figure 4.2 must be read from left to right, and from top to bottom. The questions are
drawn in an €ellipse, with the split-ups over the right-hand sides in boxes. A question is

88 General non-directional methods [Ch. 4

answered affirmatively if at least one of the boxes resultsin a“yes’. In contrast, a par-
tition only results in an affirmative answer if al questions arising from it result in a
“yes’.

Checking for cut-offs is easy: if anew question is asked, we follow the arrows in
the reversed direction (to the left). This way, we traverse the list of currently investi-
gated questions. If we meet the question again, we have to cut off the search.

To find the parsings, every question that is answered affirmatively has to pass
back a list of rules that start the derivation asked for in the question. This list can be
placed into the ellipse, together with the question. We have not done so in Figure 4.2,
because it is complicated enough as it is. However, if we strip Figure 4.2 of its dead
ends, and leave out the boxes, we get Figure 4.3.

Figure 4.3 Theresult of Unger’s parser for the sentence dd

In this case, every €elipse only has one possible grammar rule. Therefore, there is only
one parsing, and we obtain it by reading Figure 4.3 from left to right, top to bottom:

S->LSD->9D->LSDD->8DD->DD->dD-> dd.

In general, the total number of parsings is equal to the product of the number of gram-
mar rules in each ellipse.

This example shows that we can save much time by remembering answers to
guestions. For instance, the question whether L derives € is asked many times. Sheil
[CF 1976] has shown that the efficiency improves dramatically when this is done: it
goes from exponential to polynomial. Another possible optimization is achieved by
computing in advance which non-terminals can derive €. In fact, thisis a specia case of
computing the minimum length of aterminal string that each non-terminal derives. If a
non-terminal derives €, this minimum length is 0.

4.2 THE CYK PARSING METHOD

The parsing method described in this section is attributed to J. Cocke, D.H. Y ounger,
and T. Kasami, who, independently, discovered variations of the method; it is now
known as the Cocke-Y ounger-Kasami method, or the CYK method. The most accessi-
ble original description is that of Younger [CF 1967]. A much earlier description is by
Sakai [CF 1962].

As with Unger’s parsing method, the input to the CY K agorithm consists of a CF

Sec. 4.2] The CYK parsing method 89

grammar and an input sentence. The first phase of the algorithm constructs a table tel-
ling us which non-terminal(s) derive which substrings of the sentence. This is the
recognition phase. It ultimately also tells us whether the input sentence can be derived
from the grammar. The second phase uses this table and the grammar to construct al
possible derivations of the sentence.

We will first concentrate on the recognition phase, which really is the distinctive
feature of the algorithm.

4.2.1 CYK recognition with general CF grammars
To see how the CYK agorithm solves the recognition and parsing problem, let us con-
sider the grammar of Figure 4.4. This grammar describes the syntax of numbers in
scientific notation. An example sentence produced by this grammar is 32. 5e+1. We
will now use this grammar and sentence as an example.

Nunberg -> Integer | Real
Integer -> Dgit | Integer Dgit
Real -> Integer Fraction Scale
Fraction -> | nt eger
Scale -> e Sign Integer | Empty
Dgt -> 0] 1| 2] 3] 4|5 6] 7| 8|29
Enpty -> ¢
Sign -> + | -

Figure4.4 A grammar describing numbers in scientific notation

The CYK algorithm first concentrates on substrings of the input sentence, shortest
substrings first, and then works its way up. The following derivations of substrings of
length 1 can be read directly from the grammar:

Dgit Dgit Dgit Sign Dgit

e A A A R S

This means that Di gi t derives 3, D gi t derives 2, etc. Note however, that this pic-
ture is not yet complete. For one thing, there are severa other non-terminals deriving
3. This complication arises because the grammar contains so-called unit rules, rules of
the form A - B, where A and B are non-terminals. Such rules are also called single
rules or chain rules. We can have chains of them in a derivation. So, the next step
consists of applying the unit rules, repetitively, for instance to find out which other
non-terminals derive 3. This gives us the following result:

Nunber , Nunber , Nunber , Nunber ,
I nteger, | I nteger, I nt eger, Sign I nt eger,
Dagit Dagit Dagt Dagit
| 3 | 2 | | 5 | | + | 1 |

90 General non-directional methods [Ch. 4

Now, we aready see some combinations that we recognize from the grammar: For
instance, an I nt eger followed by aDigit isagan anlnteger, and a. (dot) fol-
lowed by an | nt eger isaFracti on. We get (again also using unit rules):

Nunber , | nt eger Fraction Scal e
Nunber , Nunber , Nunber , Nunber ,
I nteger, | I nteger, I nt eger, Sign I nt eger,
Dgit Dgit Dagit Dgit
| 3 | 2 | . | 5 | e | + | 1 |

At this point, we see that the Real -rule is applicable in several ways, and then the
Nunber -rule, so we get:

Nunber , Real
Nunber , Real
Nunber , | nt eger Fraction Scal e
Nunber , Nunber , Nunber , Nunber ,
I nteger, | I nteger, I nt eger, Sign I nt eger,
Dgit Dgit Dagit Dagit
| 3 | 2 | . | 5 | e | + | 1 |

We find that Nunber doesindeed derive 32. 5e+1.

In the example above, we have seen that unit rules complicate things a bit.
Another complication, one that we have avoided until now, is formed by e-rules. For
instance, if we want to recognize the input 43. 1 according to the example grammar,
we haveto realize that Scal e derives € here, so we get the following picture:

Nunber , Real
Nunber , Real
Nunber , | nt eger Fraction Scal e
Nunber , Nunber , Nunber -
Integer, | I nteger, I nt eger Phe
Dgit Dgit Dgit 7
| 4 | 3 | . | 1 |

In general this is even more complicated. We must take into account the fact that
severa non-terminals can derive € between any two adjacent terminal symbols in the
input sentence, and also in front of the input sentence or at the back. However, as we
shall see, the problems caused by these kinds of rules can be solved, albeit at a certain
Cost.

In the meantime, we will not let these problems discourage us. In the example,

Sec. 4.2] The CYK parsing method 91

we have seen that the CYK algorithm works by determining which non-terminals
derive which substrings, shortest substrings first. Although we skipped them in the
example, the shortest substrings of any input sentence are, of course, the e-substrings.
We shall have to be able to recognize them in arbitrary position, so let us first see if we
can compute R, the set of non-terminals that derive €.

Initially, this set R, consists of the set of non-terminals A for which A-¢€ is a
grammar rule. For the example grammar, R¢ isinitially the set { Enpty }. Next, we
check each grammar rule: If a right-hand side consists only of symbols that are a
member of R, we add the left-hand side to R, (it derives €, because al symbols in the
right-hand side do). In the example, Scal e would be added. This process is repeated
until no new non-terminals can be added to the set. For the example, this resultsin

R, ={ Enpty, Scal e }.

Now, we direct our attention to the non-empty substrings of the input sentence. Sup-
pose we have an input sentence z =242, - - - z, and we want to compute the set of
non-terminals that derive the substring of z starting at position i, of length . We will
use the notation s; | for this substring, so,

S| =44+ " 4+-1
Figure 4.5 presents this notation graphically, using a sentence of 4 symbols.

S1,4
S2,3
S1,3
S3.2
S22
S1,2

S1,1 S2,1 S3,1 Sa,1
b2 Z, Z3 Z4

Figure 4.5 A graphical presentation of substrings

We will use the notation Ry, for the set of non-terminals deriving the substring s ;.
This notation can be extended to deal with substrings of length 0: 5 o =¢, and
RS,O =Re.

Because shorter substrings are dealt with first, we can assume that we are at a
stage in the agorithm where al information on substrings with length smaller than a
certain | is available. Using this information, we check each right-hand side in the
grammar, to see if it derives s, as follows: suppose we have a right-hand side
Aj -+ Ap. Thenwedivide s | into m (possibly empty) segments, such that A; derives
the first segment, A, the second, etc. We start with A;. If A; --- Ay istoderives |,
A1 has to derive afirst part of it, say of length k. That is, A; must derive s ¢ (be a
member of Ry), and A, -~ - Ay must derive the rest:

92 General non-directional methods [Ch. 4

Z e Z k-1 Z 1 Z +k+1 e Zi-1

This is attempted for every k for which A; isamember of Ry, , including O. Naturally,
if A isatermina, then A; must be equal to z, and k is 1. Checking if A, -+ An

derives z 4 -+ Z 4 -1 IS done in the same way. Unlike Unger's method, we do not
have to try all partitions, because we aready know which non-terminals derive which
substrings.

Nevertheless, there are several problems with all this: in the first place, m could
be 1 and A; a non-terminal, so we are dealing with a unit rule. In this case, A; must
derive the whole substring 5 |, and thus be a member of Ry, which is the set that we
are computing now, so we do not know yet if this is the case. This problem can be
solved by observing that if A; isto derive s |, somewhere along the derivation there
must be afirst step not using aunit rule. So we have:

where C is the first non-terminal using a non-unit rule in the derivation. Disregarding
e-rules (the second problem) for a moment, this means that at a certain stage, C will be
added to the set R, . Now, if we repeat the process again and again, at some point, B
will be added, and during the next repetition, A; will be added. So, we have to repeat
the process until no new non-terminals are added to Rs,. The second problem is
caused by the e-rules. If al but one of the A; derive €, we have a problem that is basi-
cally equivalent to the problem of unit rules. It can be solved in the same way.

In the end, when we have computed all the Ry, the recognition problem is solved:

the start symbol Sderives z (= sy,p) if and only if Sisamember of R, .

This is a complicated process, but part of this complexity stems from the e-rules
and the unit rules. Their presence forces us to do the R, computation repetitively.
Another, less serious source of the complexity is that a right-hand side may consist of
arbitrary many non-terminals, so trying all possibilities can be alot of work. So, impos-
ing certain restrictions on the rules may simplify this process a great deal. However,
these restrictions should not limit the generative power of the grammar significantly.

4.2.2 CYK recognition with a grammar in Chomsky Normal Form
Two of the restrictions that we want to impose on the grammar are obvious by now: no
unit rules and no e-rules. We would also like to limit the maximum length of a right-
hand side to 2; this would simplify checking that a right-hand side derives a certain
substring. It turns out that there is a form for CF grammars that exactly fits these res-
trictions: the Chomsky Normal Form. It isasif this normal form was invented for this
algorithm. A grammar isin Chomsky Normal Form (CNF), when all rules either have
the form A - a, or A~ BC, where a is atermina and A, B, and C are non-terminals.
Fortunately, as we shall see later, amost al CF grammars can be mechanically
transformed into a CNF grammar.

We will first discuss how the CYK-algorithm works for a grammar in CNF.

Sec. 4.2] The CYK parsing method 93

There are no e-rules in a CNF grammar, so R; is empty. The sets R , can be read

directly from the rules. they are determined by the rules of the form A-a. A rule
A - BC can never derive asingle terminal, because there are no e-rules.

Next, we proceed iteratively as before, first processing all substrings of length 2,
then all substrings of length 3, etc. When a right-hand side BC is to derive a substring
of length |, B has to derive the first part (which is non-empty), and C the rest (aso
non-empty).

Z Z k-1 Z 4k Zi-1

So, B must derive s g, that is, B must be a member of Ry, and, likewise, C must
derive § .4 | k. that is, C must be amember of Rs,, - Determining if such ak existsis
easy: just try all possibilities; they range from 1 to | -1. All sets R, and R, ,_, have
already been computed at this point.

This process is much less complicated than the one we saw before, with a general
CF grammar, for two reasons: the most important one is that we do not have to repeat
the process again and again until no new non-terminals are added to Ry | . Here, the sub-
strings we are dealing with are really substrings. They cannot be equal to the string we
started out with. The second reason is that we only have to find one place where the
substring must be split in two, because the right-hand side only consists of two non-
terminals. In ambiguous grammars, there can be several different splittings, but at this
point, that does not worry us. Ambiguity is a parsing issue, not a recognition issue.

The algorithm results in a complete collection of sets Rg,. The sentence z con-
sists of only n symbols, so a substring starting at position i can never have more than
n+1-i symbols. This means that there are no substrings s | with i +/>n+1. Therefore,
the Ry, sets can be organized in atriangular table, as depicted in Figure 4.6.

Rsl,n

Rsl.n—l RSZ.H—l

RSl.\ o Rfu

Rsl,l o Rsi,l o " RS+|—1,1 o Rsn,l

Figure 4.6 Form of the recognition table

This table is called the recognition table, or the well-formed substring table. Ry, is
computed following the arrows V and W simultaneously, looking for rules A — BC with

9 General non-directional methods [Ch. 4

B a member of a set on the V arrow, and C a member of the corresponding set on the W
arrow. For B, substrings are taken starting at position i, with increasing length k. So the

V arow is vertical and rising, visiting Rs ,, Rs ,, ", Rs,, ", Ry,_;; for C, sub-
strings are taken starting at position i +k, with length | -k, with end-position i + -1, so
the W arrow is diagonally descending, visiting Rsm-l’ RS+2’|_2, s Rﬁw_k, cee
R3+I—1,1'

As described above, the recognition table is computed in the order depicted in
Figure 4.7(a). We could also compute the recognition table in the order depicted in Fig-
ure 4.7(b). In this last order, Ry, is computed as soon as all sets and input symbols
needed for its computation are available. For instance, when computing Rs, ;. Rs,, is
relevant, but R , is not, because the substring at position 3 with length 3 does not con-
tain the substring at position 6 with length 1. This order makes the algorithm particu-
larly suitable for on-line parsing, where the number of symbols in the input is not
known in advance, and additional information is computed each time a symbol is
entered.

(a) off-line order (b) on-line order

Figure 4.7 Different orders in which the recognition table can be computed

Now, let us examine the cost of this algorithm. Figure 4.6 shows that there are
(n* (n+1))/2 substrings to be examined. For each substring, at most n-1 different k-
positions have to be examined. All other operations are independent of n, so the algo-
rithm operates in atime at most proportional to the cube of the length of the input sen-
tence. Assuch, it isfar more efficient than exhaustive search, which needs a time that
is exponential in the length of the input sentence.

4.2.3 Transforming a CF grammar into Chomsky Normal Form

The previous section has demonstrated that it is certainly worth while to try to
transform a general CF grammar into CNF. In this section, we will discuss this
transformation, using our number grammar as an example. The transformation is split
up into several stages.

o first, e-rules are eliminated.

then, unit rules are eliminated.

then, non-productive non-terminals are removed.

then, non-reachable non-terminals are removed.

then, finally, the remaining grammar rules are modified, and rules are added, until
they all have the desired form, that is, either A -~ aor A - BC.

All these transformations will not change the language defined by the grammar. Thisis
not proven here. Most books on formal language theory discuss these transformations

OoOooao

Sec. 4.2] The CYK parsing method 95

more formally and provide proofs, see for example Hopcroft and Ullman [Books 1979].

4.2.3.1 Eliminating e-rules

Suppose we have a grammar G, with an g-rule A - ¢, and we want to eliminate this
rule. We cannot just remove the rule, as this would change the language defined by the
non-terminal A, and also probably the language defined by the grammar G. So, some-
thing has to be done about the occurrences of A in the right-hand sides of the grammar
rules. Whenever A occurs in a grammar rule B - aAB, we replace this rule with two
others. B - aA'3, where A’ is a new non-terminal, for which we shall add rules later
(these rules will be the non-empty grammar rules of A), and B - af3, which handles the
case where A derives € in a derivation using the B » aAp rule. Notice that the a and 3
in the rules above could aso contain A; in this case, each of the new rules must be
replaced in the same way, and this process must be repeated until all occurrences of A
are removed. When we are through, there will be no occurrence of A left in the gram-
mar.

Every e-rule must be handled in this way. Of course, during this process new ¢-
rules may originate. This is only to be expected: the process makes all e-derivations
explicit. The newly created e-rules must be dealt with in exactly the same way. Ulti-
mately, this process will stop, because the number of non-terminals deriving € is lim-
ited and, in the end, none of these non-terminals occur in any right-hand side.

The next step in eliminating the e-rules is the addition of grammar rules for the
new non-terminals. If A is a non-terminal for which an A" was introduced, we add a
rule A' > a for al non-ge-rules A - a. Since all e-rules have been made explicit, we can
be sure that if a rule does not derive € directly, it cannot do so indirectly. A problem
that may arise here is that there may not be a non-¢-rule for A. In this case, A only
derives €, so we remove al rulesusing A'.

All this leaves us with a grammar that still contains e-rules. However, none of the
non-terminals having an e-rule occurs in any right-hand side. These occurrences have
just been carefully removed. So, these non-terminals can never play a role in any
derivation from the start symbol S, with one important exception: Sitself. In particular,
we now have arule S-¢ if and only if € is a member of the language defined by the
grammar G. All other non-terminals with €-rules can be removed safely. Cleaning up
the grammar isleft to later transformations.

S -> LaM
L -> LM
L -> ¢

M -> MM
M -> ¢

Figure 4.8 An example grammar to test e-rule elimination schemes

The grammar of Figure 4.8 is a nasty grammar to test your e-rule elimination
scheme. Our scheme transforms this grammar into the grammar of Figure 4.9. This
grammar gtill has e-rules, but these will be eliminated by the remova of non-
productive and/or non-reachable non-terminals. Cleaning up this mess will leave only
one rule: S—a. Removing the e-rules in our number grammar results in the grammar
of Figure 4.10. Note that the two rules to produce €, Enpty and Scal e, are still

96 General non-directional methods [Ch. 4

S -> I'aM]aM | L al| a
L -> M| L | M| e

M -> MM | M| ¢

L' -> "M]| L | M

M -> MM | M

Figure 4.9 Result after our e-rule elimination scheme

Nunberg -> Integer | Real
Integer -> Dgit | Integer Dgit

Real -> Integer Fraction Scale’ | Integer Fraction
Fraction -> . Integer
Scale’ -> e Sign Integer
Scale -> e Sgninteger | ¢
Epty -> ¢
Dgit -> 0| 1] 2]3]4]5]6]7]8]29
Sgh -> +| -

Figure 4.10 Our number grammar after elimination of e-rules

present but are not used any more.

4.2.3.2 Eliminating unit rules

The next trouble-makers to be eliminated are the unit rules, that is, rules of the form
A - B. It isimportant to realize that, if such arule A - B isused in aderivation, it must
be followed at some point by the use of a rule B - a. Therefore, if we have a rule
A - B, and therulesfor B are

B-ogfoaz| - |ap,
we can replace the rule A - B with
A-agfag| |

In doing this, we can of course introduce new unit rules. In particular, when repeating
this process, we could at some point again get the rule A - B. In this case, we have an
infinitely ambiguous grammar, because B derives B. Now this may seem to pose a
problem, but we can just leave such a unit rule out; the effect is that we short-cut
derivations like

Also rules of the form A - A are left out. In fact, a pleasant side-effect of removing e-
rules and unit rules is that the resulting grammar is not infinitely ambiguous any more.

Removing the unit rules in our e-free number grammar results in the grammar of
Figure 4.11.

4.2.3.3 Removing non-productive non-terminals
Non-productive non-terminals are non-terminals that have no terminal derivation.
Every sentential form that can be derived from it will contain non-terminals. These are

Sec. 4.2] The CYK parsing method 97

Nunberg -> 0| 1| 2| 3| 4| 5| 6] 7| 8]29
Nunberg -> Integer Digit

Nunberg -> Integer Fraction Scale’ | Integer Fraction
Integer -> 0| 1| 2| 3| 4| 5| 6] 7| 8] 9
Integer -> Integer Digit

Real -> Integer Fraction Scale’ | Integer Fraction
Fraction -> . Integer
Scal e’ -> e Sign Integer
Scale -> e Signinteger | ¢
Empty -> ¢
Dgit -> 0] 1] 2| 3| 4| 5] 6] 7] 8] 29
Sign -> +| -

Figure4.11 Our number grammar after eliminating unit rules

not pleasant things to have in a grammar. Naturally, “proper” grammars do not have
them. Nevertheless, we must be able to determine which non-terminals do have a ter-
minal derivation, if only to check that a grammar is* proper”.

To find out which non-terminals have aterminal derivation we use a scheme that
hinges on the fact that a non-terminal has a termina derivation if and only if it has a
right-hand side consisting of symbols that all have aterminal derivation. Of course, ter-
minals have themselves a termina derivation. The scheme works as follows: First, we
mark the non-terminals that have a right-hand side containing only terminas. they
obviously have a terminal derivation. Next, we mark all non-terminals that have a
right-hand side consisting only of terminals and marked non-terminals: they too have a
terminal derivation. We keep on doing this until there are no more non-terminals to be
marked.

Now, the non-productive non-terminals are the ones that have not been marked in
the process. We remove all rules that contain a non-marked non-terminal in either the
left-hand side or the right-hand side. This process does not remove all rules of a
marked non-terminal, as there must be at least one rule for it with a right-hand side
consisting only of terminals and marked non-terminals, or it would not have been
marked in the first place. (This may remove al rules, including those for the start-
symbol, in which case the grammar describes the empty language).

Our number grammar does not contain non-productive non-terminals, so it will
not be changed by this phase.

4.2.3.4 Removing non-reachable non-terminals
A non-terminal is called reachable or accessible if there exists at least one sentential
form, derivable from the start symbol, in which it occurs. So, a non-terminal A is reach-
able if S5 aAp for some a and B. A non-terminal is non-reachable if it is not reach-
able. For non-reachable non-terminals the same holds as for non-productive non-
terminals: they do not occur in “proper” grammars. However, they can be introduced
by some of the transformations that we have seen before, so we must be able to find
them to “clean up” agrammar again.

We found the non-productive non-terminals by finding the “useful” ones. Like-
wise, we find the non-reachable non-terminals by finding the reachable ones. For this,

98 General non-directional methods [Ch. 4

we can use the following scheme: First, the start symbol is marked: it is reachable.
Then, any time an as yet unmarked non-terminal is marked, al non-terminals occurring
in any of its right-hand sides are marked. In the end, the unmarked non-terminals are
not reachable and their rules can be removed. They do not occur in any right-hand side
of areachable non-terminal, for otherwise it would have been marked in the process.

It is interesting to note that removing non-reachable non-terminals does not intro-
duce non-productive non-terminals. However, first removing non-reachable non-
terminals and then removing non-productive non-terminals may produce a grammar
which contains again non-reachable non-terminals. Finding an example demonstrating
thisisleft to the reader.

In our number grammar, the non-terminals Real , Scal e, and Enpty are non-
reachable, which leaves us with the grammar of Figure 4.12.

Nunberg -> 0| 1| 2| 3| 4| 5| 6] 7] 8]29
Nunberg -> Integer Digit

Nunberg -> Integer Fraction Scale’ | Integer Fraction
Integer -> 0| 1| 2| 3| 4| 5| 6] 7| 8] 9
Integer -> Integer Digit

Fraction -> . Integer

Scale’ -> e Sign Integer

Dgit -> 0| 1| 2] 3] 4| 5| 6] 7] 8] 9
Sign -> +| -

Figure 4.12 Our number grammar after removal of non-reachable rules

4.2.3.5 Finally, to Chomsky Normal Form

After all these grammar transformations, we have a grammar without €-rules or unit
rules, all non-terminal are reachable, and there are no non-productive non-terminals.
So, we are left with two types of rules: rules of the form A - a, which are already in the
proper form, and rules of the form A - X1 X5 - - - X;,,, with m=>2. For every terminal b
occurring in such a rule we create a new non-terminal T, with as only rule Ty, - b, and
we replace each occurrence of b in arule A X X5 -+ - X, with Ty. Now, the only
rules not yet in CNF are of the form A - X1 X5 - - - X, with m=3, and all X; a non-
terminal. These rules can now just be split up:

A . X1 X5 X
isreplaced by the following two rules:

A o AXzo Xy
AL - XX,

where A; isanew non-terminal. Now, we have replaced the original rule with one that
is one shorter, and one that isin CNF. This splitting can be repeated until all parts are
in CNF. Figure 4.13 represents our number grammar in CNF.

Sec. 4.2] The CYK parsing method 99

Nunberg -> 0| 1] 2| 3| 4| 5| 6] 7| 8]29
Nunberg -> Integer Digit
Nunberg -> NI Scale’ | Integer Fraction
NL -> Integer Fraction
Integer -> 0] 1| 2| 3| 4| 5| 6| 7] 8] 9
Integer -> Integer Dgit
Fraction -> T1 Integer
T -> .
Scale’ -> N2 Integer
N -> T2 Sign

T2 -> e
Dagit -> 0] 1] 2] 3| 45| 6] 7] 8] 9
Sign -> +| -

Figure 4.13 Our number grammar in CNF

4.2.4 Theexamplerevisited

Now, let us see how the CYK algorithm works with our example grammar, which we
have just transformed into CNF. Again, our input sentence is 32. 5e+1. The recogni-
tion table is given in Figure 4.14. The bottom row is read directly from the grammar;
for instance, the only non-terminals having a production rule with right-hand side 3 are
Nunber, I nteger, and D gi t. Notice that for each symbol a in the sentence there
must be at least one non-terminal A with a production rule A - a, or else the sentence
cannot be derived from the grammar.

The other rows are computed as described before. Actualy, there are two ways to
compute a certain Ry . The first method is to check each right-hand side in the gram-
mar; for instance, to check whether the right-hand side NL Scal e’ derives the sub-
string 2. 5e (= s 4). The recognition table derived so far tells us that
o NLisnotamember of Rs,, or Rs, ,,

o NLisamember of R, ,, but Scal €’ isnot amember of Rg,
so the answer is no. Using this method, we have to check each right-hand side in this
way, adding the left-hand side to Rg,,, if we find that the right-hand side derives s; 4.

The second method is to compute possible right-hand sides from the recognition
table computed so far; for instance, Rs,, is the set of non-terminals that have a right-
hand side AB where either
o Aisamember of Rs,, and Bisamember of R, ,, or
o Aisamember of Rs,, and Bisamember of Rs, ,, or
o Aisamember of R, , and Bisamember of R, .

This gives as possible combinations for AB: NL T2 and Nunber T2. Now we check
al rules in the grammar to see if they have a right-hand side that is a member of this
set. If so, theleft-hand sideisadded to R, , .

4.25 CYK parsing with Chomsky Normal Form

We now have an agorithm that determines whether a sentence belongs to alanguage or
not, and it is much faster than exhaustive search. Most of us, however, not only want to
know whether a sentence belongs to a language, but also, if so, how it can be derived

100 General non-directional methods [Ch. 4
7| Nunber
6 0 Nunber
5 O O O
Nunber ,
4 NL O O O
Nunber , ,
3 0 NL 0 0 Scal e
2 Nunber , 0 Fraction 0 N2 0
| nt eger
Nunber , Nunber , Nunber , Nunber ,
1/ Integer, | Integer, T1 I nt eger, T2 Sign I nt eger,
Dagit Dgit Dagit Dagit
3 2 . 5 e + 1
1 2 3 4 5 6 7
| —— =

Figure 4.14 The recognition table for the input sentence 32. 5e+1

from the grammar. If it can be derived in more than one way, we probably want to
know all possible derivations. As the recognition table contains the information on all
derivations of substrings of the input sentence that we could possible make, it a'so con-
tains the information we want. Unfortunately, this table contains too much informa-
tion, so much that it hides what we want to know. The table may contain information
about non-terminals deriving substrings, where these derivations cannot be used in the
derivation of the input sentence from the start symbol S For instance, in the example
above, Rg, , contains N1, but the fact that NL derives 2. 5 cannot be used in the derivar
tion of 32. 5e+1 from Nunber .

The key to the solution of this problem lies in the simple observation that the
derivation must start with the start-symbol S The first step of the derivation of the
input sentence z, with length n, can be read from the grammar, together with the recog-
nition table. If n=1, there must be arule S- z if n>2, we have to examine all rules
S— AB, where A derives the first k symbols of z, and B the rest, that is, A is a member
of Rs,, and B is amember of Ry ,, ., for some k. There must be at least one such a
rule, or else Swould not derive z

Now, for each of these combinations AB we have the same problem: how does A
derive sq x and B derive sc11 ,—«? These problems are solved in exactly the same way.
It does not matter which non-terminal is examined first. Consistently taking the left-

Sec. 4.2] The CYK parsing method 101

most one results in a left-most derivation, consistently taking the right-most one results
in aright-most derivation.

Notice that we can use an Unger-style parser for this. However, it would not have
to generate al partitions any more, because we aready know which partitions will
work.

Let us try to find a left-most derivation for the example sentence and grammar,
using the recognition table of Figure 4.14. We begin with the start symbol, Nunber .
Our sentence contains seven symbols, which is certainly more than one, so we have to
use one of the rules with aright-hand side of the form AB. Thelnteger Digit ruleis
not applicable here, because the only instance of Di gi t that could lead to a derivation
of the sentence is the one in Ry, , but I nteger is not a member of Ry .. The
I nteger Fraction rule is not applicable either, because there is no Fracti on
deriving the last part of the sentence. This leaves us with the production rule Nunber
-> N1 Scal €', which is indeed applicable, because N1 is a member of Rs,,, and
Scal e’ isamember of Rs,, so NL derives 32. 5 and Scal e’ derivese+1.

Next, we have to find out how NL derives 32. 5. There is only one applicable
rule: NL -> Integer Fraction, anditisindeed applicable, because I nt eger isa
member of Rs, ,, and Fracti on is a member of Ry, ,, so I nteger derives 32, and
Fracti on derives. 5. Inthe end, we find the following derivation:

Nunber ->

NL Scale’ ->

Integer Fraction Scale ->
Integer Dgit Fraction Scale’ ->
3 Dgit Fraction Scale’ ->
2 Fraction Scale” ->

2 T1 Integer Scale’ ->
Integer Scale’ ->

5 Scale’ ->

5 N2 Integer ->

5 T2 Sign Integer ->
5e Sgn Integer ->
5e+ Integer ->
5e+1

WWWWWwwwww
NNNNNDNDDNDN

Unfortunately, this is not exactly what we want, because this is a derivation that uses
the rules of the grammar of Figure 4.13, not the rules of the grammar of Figure 4.4, the
one that we started with.

4.2.6 Undoing the effect of the CNF transformation

When we examine the grammar of Figure 4.4 and the recognition table of Figure 4.14,
we see that the recognition table contains the information we need on most of the non-
terminals of the origina grammar. However, there are a few non-terminals missing in
the recognition table: Scal e, Real , and Enpty. Scal e and Enpty were removed
because they became non-reachable, after the elimination of e-rules. Enpty was
removed altogether, because it only derived the empty string, and Scal e was replaced
by Scal e’ , where Scal e’ derives exactly the same as Scal e, except for the empty

102 General non-directional methods [Ch. 4

string. We can use this to add some more information to the recognition table: at every
occurrence of Scal e’ , we add Scal e.

The non-terminal Real was removed because it became non-reachable after elim-
inating the unit rules. Now, the CYK agorithm does not require that all non-terminals
in the grammar be reachable. We could just as well have left the non-terminal Real in
the grammar, and have transformed its rules to CNF. The CYK algorithm would then
have added Real to the recognition table, wherever that would be appropriate. The
rules for Real that would be added to the grammar of Figure 4.13 are:

Real -> Nl Scale’ | Integer Fraction

The resulting recognition table is presented in Figure 4.15. In this figure, we have
also added an extra row at the bottom of the triangle. This extra row represents the
non-terminals that derive the empty string. These non-terminals can be considered as
possibly occurring between any two adjacent symbols in the sentence, and aso in front
of or at the end of the sentence. The set Ry , represents the non-terminals that can be
considered as possibly occurring just in front of symbol z and the set Rs_ ,, , represents

the ones that can occur at the end of the sentence.

7 Nunber ,
Real
Nunber ,
6 . Real
5 O O O
Nunber ,
4| Real, O O O
NL
Nunber ,)
3 O Real , 0 0 S;:;ee’
NL
2 Nunber , O Fraction O N2 O
I nt eger
Nunber, | Nunber, Nunber , Nunber ,
1| Integer, |Integer, T1 I nt eger, T2 Sign I nt eger,
Dagit Dgit Dagit Dagit
0 Scal e, Scal e, Scal e, Scal e, Scal e, Scal e, Scal e, Scal e,
Enpty Enpty Enpty Enpty Enpty Enpty Enpty Enpty
3 2 . 5 e + 1
1 2 3 4 5 6 7 8
i —_—

Now, we have arecognition table which contains al the information we need to parse a

Figure 4.15 The recognition table with Scal e, Real , and Enpt y added

Sec. 4.2] The CYK parsing method 103

sentence with the original grammar. Again, a derivation starts with the start-symbol S

If A1A5 -+ - Ay isaright-hand side of S we want to know if this rule can be applied,

thet is, if AjA, -+ Ay, derives sq . This is checked, starting with A;. There are two

cases.

o Ajisaterminal symbol. In this case, it must be the first symbol of s; j,, or this
rule is not applicable. Then, we must check if A, - - - Ay, derives s, -4, in the
same way that we are now checking if AjA; - - - Ay, derives sy .

o A isanon-terminal. In this case, it must be a member of aRs, ,, for some k, or
this rule is not applicable. Then, we must check if Aj - - - Ay, derives Sy n, IN
the same way that we are now checking if AjA; - - - Ay, derives s; . If we want
al parsings, we must do this for every k for which A; is a member of R .
Notice that non-terminals deriving the empty string pose no problem at al,
because they appear as amember of Ry for all i.

We have now determined whether the rule is applicable, and if it is, which parts of the
rule derive which substrings. The next step now is to determine how the substrings can
be derived. These tasks are similar to the task we started with, and are solved in the
same way. This process will terminate at some time, provided the grammar does not
contain loops. Thisis simply an Unger parser that knows in advance which partitions
will lead to a successful parse.

Let us go back to the grammar of Figure 4.4 and the recognition table of Figure
4.15, and see how this works for our example input sentence. We now know that
Nunber does derive 32. 5e+1, and want to know how. We first ask ourselves: can we
use the Nunber -> | nteger rule?l nt eger isamember of R, and R, ,, but there
is nothing behind the I nt eger in the rule to derive the rest of the sentence, so we can-
not use thisrule. Can we use the Nunber -> Real rule? Yes we can, because Real
is a member of Ry, _, and the length of the sentence is 7. So, we start our derivation

with

17?7

Nunber -> Real -> ...

Now, we get similar questions for the Real non-terminal: can we use the Real ->

I nteger Fraction Scal e rule? Well, I nt eger is a member of Rg, ,, but we can-
not find aFraction inany of the Ry, sets. However, | nt eger is also a member of
Rs,,, and Fract i on isamember of Rs,,. Now, Scal e isamember of R, ;; this does

not help because it would leave nothing in the rule to derive the rest. Fortunately,
Scal e is aso a member of Rs; 5, and that matches exactly to the end of the string. So,

thisrule isindeed applicable, and we continue our derivation:

Nunber -> Real -> Integer Fraction Scale -> ...

The sentence is now split up into three parts:

104 General non-directional methods [Ch. 4

Nunber
Real
| nt eger Fraction | Scal e
32 . 5 e +1

It isleft to the reader to verify that we will find only one derivation, and that thisisit:

Nunber ->

Real ->

Integer Fraction Scale ->
Integer Digit Fraction Scale ->
Dgit Dgit Fraction Scale ->
3 Dgit Fraction Scale ->

2 Fraction Scale ->

Integer Scale ->

Dgit Scale ->

5 Scale ->

5 e Sign Integer ->
5e + Integer ->
5e+Dgt ->

5e+1

WWWWwwwww
NNNNMDNNDN

427 A short retrospective of CYK

We have come along way. We started with building a recognition table using the ori-
ginal grammar. Then we found that using the original grammar with its unit rules and
e-rules is somewhat complicated, although it can certainly be done. We proceeded by
transforming the grammar to CNF. CNF does not contain unit rules or e-rules; our gain
in this respect was that the algorithm for constructing the recognition table became
much simpler. The limitation of the maximum length of a right-hand side to 2 was a
ganin efficiency, and also alittle in ssimplicity. However, Sheil [CF 1976] has demon-
strated that the efficiency only depends on the maximum number of non-terminals
occurring in aright-hand side of the grammar, not on the length of the right-hand sides.
This can easily be understood, once one realizes that the efficiency depends (among
others) on the number of cuts in a substring that are “difficult” to find, when checking
whether a right-hand side derives this substring. This number of “difficult” cuts only
depends on the number of non-terminalsin the right-hand side. So, for efficiency, CNF
isabit too restrictive.

A disadvantage of this transformation to CNF is that the resulting recognition
table lacks some information that we need to construct a derivation using the original
grammar. In the transformation process, some non-terminals were thrown away,
because they became non-productive. Fortunately, the missing information could
easily be added. Ultimately, this process resulted in almost the same recognition table
that we would get with our first attempt using the original grammar. It only contains
some extra information on non-terminals that were added during the transformation of
the grammar to CNF. More importantly, however, it was obtained in a ssmpler and
much more efficient way.

Sec. 4.2] The CYK parsing method 105

4.2.8 Chart parsing
The CYK algorithm is aso known under the name of chart parsing. More precisely,
both techniques have a number of variants and some variants of the CYK algorithm are
identical to some variants of chart parsing. The most striking difference between them
lies in the implementation; conceptually both algorithms do the same thing: they collect
possible parsings for larger and larger chunks of the input.

Although often presented in a different format, a chart is just a recognition table.
Figure 4.16 shows the recognition table of Figure 4.14 in a chart format: each arc
represents a non-terminal deriving the part of the sentence spanned by the arc.

Nunber

Nunber

Figure 4.16 Therecognition table of Figure 4.14 in chart format

Severa variants of chart parsing are discussed and compared in Bolc [NatLang
1987].

5

Regular grammars and finite-state automata

Regular grammars are the ssmplest form of grammars that still have generative power.
They can describe concatenation (joining two texts together) and repetition and can
specify aternatives, but they cannot express nesting. Regular grammars are probably
the best-understood part of formal linguistics and almost all questions about them can
be answered.

5.1 APPLICATIONS OF REGULAR GRAMMARS

In spite of their simplicity there are many applications of regular grammars, of which
we will briefly mention the most important ones.

5.1.1 CF parsing

In some parsers for CF grammars, a subparser can be discerned that handles a regular
grammar; such a subparser is based implicitly or explicitly on the following surprising
phenomenon. Consider the sentential forms in left-most or right-most derivations.
Such a sentential form consists of a closed (finished) part, which contains terminal
symbols only and an open (unfinished) part which contains non-terminals as well. In
left-most derivations, the open part starts at the left-most non-terminal and extends to
the right, in right-most derivations, the open part starts at the right-most non-terminal
and extends to the left; see Figure 5.1 which uses sentential forms from Section 2.5.2.

d, N&N N, N&h
b -

Figure 5.1 Open partsin left-most and right-most productions

Now it can be proved (and it is not difficult to show) that these open parts can be
described by a regular grammar (which follows from the CF grammar). Furthermore,
these open parts of the sentential form play an important role in some CF parsing
methods which explains the significance of regular grammars for CF parsing.

Sec. 5.1] Applications of regular grammars 107

5.1.2 Systemswith finite memory

Since CF (or stronger) grammars alow nesting and since nesting can, in principle, be
arbitrarily deep, the generation of correct CF (or stronger) sentences may, in principle,
require an arbitrary amount of memory to temporarily hold the unprocessed nesting
information. Mechanical systems do not possess an arbitrary amount of memory and
consequently cannot exhibit CF behaviour and are restricted to regular behaviour. This
is immediately clear for simple mechanical systems like vending machines, traffic
lights and video-recorders: they all behave according to aregular grammar. Itisasoin
principle true for more complicated mechanical systems, like a country’s train system
or a computer. Here, the argument gets, however, rather vacuous since nesting infor-
mation can be represented very efficiently and alittle memory can take care of alot of
nesting. Consequently, although these systems in principle exhibit regular behaviour, it
is often easier to describe them with CF or stronger means, even though that would
incorrectly ascribe infinite memory to them.

Conversely, the global behaviour of many systems that do have much memory can
still be described by a regular grammar, and many CF grammars are already for alarge
part regular. Thisis because regular grammars already take adequate care of concatena-
tion, repetition and choice; context-freeness is only required for nesting. If we apply a
rule that produces a regular (sub)language (and which consequently could be replaced
by aregular rule) “quasi-regular”, we can observe the following. If al aternatives of a
rule contain terminals only, that rule is quasi-regular (choice). If al aternatives of a
rule contain only terminals and non-terminals the rules of which are quasi-regular and
non-recursive, then that rule is quasi-regular (concatenation). And if aruleis recursive
but recursion occurs only at the end of an alternative and involves only quasi-regular
rules, then that rule is again quasi-regular (repetition). This often covers large parts of a
CF grammar. See Krzemief and Lukasiewicz [FS 1976] for an algorithm to identify all
guasi-regular rules in agrammar.

Natural languages are a case in point. Although CF or stronger grammars seem
necessary to delineate the set of correct sentences (and they may very well be, to catch
many subtleties), quite a good rough description can be obtained through regular
languages. Consider the stylized grammar for the main clause in an Subject-Verb-
Object (SVO) language in Figure 5.2.

Maind ause -> Subject Verb (bject
Subject -> [a| the] Adjective Noun
hject -> [a| the] Adjective’ Noun

Verb -> verbl | verb2 |

Adjective -> adjl | adj2 |

Noun -> nounl | noun2 |

Figure 5.2 A not obviously quasi-regular grammar

This grammar is quasi-regular: Ver b, Adj ect i ve and Noun are regular by themselves,
Subj ect and (hj ect are concatenations of repetitions of regular forms (regular non-
terminals and choices) and are therefore quasi-regular, and so is Mai nd ause. It takes
some work to bring this grammar into standard regular form, but it can be done, as
shown in Figure 5.3, in which the lists for verbs, adjectives and nouns have been abbre-
viated to verb, adjective and noun, to save space. Even (finite) context-

108 Regular grammars and finite-state automata [Ch.5

Mai nd ause -> a Subj Adj Noun_verb_(bj ect
Mai nd ause -> the Subj Adj Noun_verb_Cbj ect

Subj Adj Noun_verb_(bject -> noun verb_Cbj ect
Subj Adj Noun_verb_(hject -> adjective Subj Adj Noun_ver b_(bj ect

verb hject -> verb (bject

(hject -> a (bj Adj Noun
(hject -> the (bj Adj Noun

(bj Adj Noun -> noun
(bj Adj Noun -> adj ective (bj Adj Noun

verb -> verbl | verb2 |
adjective -> adjl | adj2 |
noun -> nounl | noun2 |

Figure 5.3 Aregular grammar in standard form for that of Figure 5.2

dependency can be incorporated: for languages that require the verb to agree in number
with the subject, we duplicate the first rule:

Mai nd ause -> Subject S ngul ar VerbS ngul ar (bj ect
| Subj ect Plural VerbPl ural bject

and duplicate the rest of the grammar accordingly. The result is still regular. Nested
subordinate clauses may seem a problem, but in practical usage the depth of nesting is
severely limited. In English, a sentence containing a subclause containing a subclause
containing a subclause will baffle the reader, and even in German and Dutch nestings
over say five deep are frowned upon. We replicate the grammar the desired number of
times and remove the possibility of further recursion from the deepest level. Then the
deepest level is regular, which makes the other levels regular in turn. The resulting
grammar will be huge but regular and will be able to profit from all smple and effi-
cient techniques known for regular grammars. The required duplications and modifica-
tions are mechanical and can be done by a program. Dewar, Bratley and Thorne
[NatLang 1969] describe an early example of this approach, Blank [NatLang 1989] a
recent one.

5.1.3 Pattern searching

Many linear patterns, especially text patterns, have a structure that is easily expressed
by a (quasi-)regular grammar. Notations that indicate amounts of money in various
currencies, for instance, have the structure given by the grammar of Figure 5.4, where
_ has been used to indicate a space symbol. Examples are $_19. 95 and ¥_1600. Such
notations, however, do not occur in isolation but are usually embedded in long stretches
of text that itself does not conform to the grammar of Figure 5.4. To isolate the nota-
tions, a recognizer (rather than a parser) is derived from the grammar that will accept
arbitrary text and will indicate where sequences of symbols are found that conform to

Sec. 5.1] Applications of regular grammars 109

Amount g -> QurrencySynbol Space* Digit" Cent s?
QurrencySynbol -> f | $| ¥ | £ |
Space ->
Dgit -> [0123456789]
Cents -> . Dgit Dgit | .--

Figure5.4 A quasi-regular grammar for currency notations

the grammar. Parsing (or an other form of analysis) is deferred to a later stage. A tech-
nique for constructing such arecognizer is given in Section 5.3.4.

5.2 PRODUCING FROM A REGULAR GRAMMAR

When producing from a regular grammar, the producer needs to remember only one
thing: which non-terminal is next. We shall illustrate this and further concepts using the
simple regular grammar of Figure 5.5.

Ss -> aA
S -> aB
A -> bB
A -> DbC
B -> cA
B -> c¢C
C -> a

Figure 5.5 Sample regular grammar

This grammar produces sentences consisting of an a followed by an alternating
sequence of b’s and c¢’s followed by aterminating a. For the moment we shall restrict
ourselves to regular grammars in standard notation; further on we shall extend our
methods to more convenient forms.

The one non-terminal the producer remembers is called its state and the producer
issaid to be in that state. When a producer isin a given state, for instance, A, it chooses
one of the rules belonging to that state, for instance, A- >bC, produces the b and moves
to state C. Such a move is caled a state transition. It is customary to represent the
states and the possible transitions of a producer in a transition diagram, Figure 5.6,
where the above state transition is represented by the arc marked b from Ato C.

Figure 5.6 Transition diagram for the regular grammar of Figure 5.5

110 Regular grammars and finite-state automata [Ch.5

Sistheinitia state and the accepting state is marked ¢; another convention (not used
here) isto draw an accepting state as a double circle. The symbols on the arcs are those
produced by the corresponding move. The producer stops when it is in an accepting
state. Like the non-deterministic automaton we saw in Section 3.4, the producer is an
automaton, a finite non-deterministic automaton, or finite-state automaton, to be exact.
“Finite” because it can only be in a finite number of states (5 in this case; 3 bits of
internal memory would suffice) and “non-deterministic” because, for instance, in state
S it has more than one way to produce an a.

5.3 PARSING WITH A REGULAR GRAMMAR

The above automaton for producing a sentence can in principle also be used for pars-
ing. If we have a sentence, for instance, abcba, and want to check and parse it, we can
view the above transition diagram as a maze and the (tokens in the) sentence as a guide.
If we manage to follow a path through the maze, matching symbols from our sentence
to those on the walls of the corridors as we go and end up in ¢ exactly at the end of the
sentence, we have checked the sentence and the names of the rooms we have visited
form the backbone of the parse tree. See Figure 5.7, where the path is shown as a dotted
line.

Figure 5.7 Actual and linearized passage through the maze

Now thisis easier said than done. How did we know, for instance, to turn left in room S
rather than right? Of course we could employ general maze-solving techniques (and
they would give us our answer in exponential time) but a much simpler and much more
efficient answer is available here: we split ourselves in two and head both ways. After
the first a of abcba we are in the set of rooms {A, B}. Now we have a b to follow;
from B there are no exits marked b but from A there are two, which lead to B and C. So
we are now in rooms {B, C}. Our path is now more difficult to depict but still easy to
linearize, as shown in Figure 5.8. We can find the parsing by starting at the end and
following the pointers backwards. ¢ <- C <- A< B <- A <- S If thegrammar
is ambiguous the backward pointers may bring us to a fork in the road: an ambiguity
has been found and both paths have to be followed separately to find both parsings.
With regular grammars, however, one is often not interested in the parse, but only in
the recognition: the fact that the input is correct and it ends here suffices.

Sec. 5.3] Parsing with aregular grammar 111

Figure 5.8 Linearized set-based passage through the maze

5.3.1 Replacing sets by states

Although the process described above is linear in the length of the input (each next
token takes an amount of work that is not dependent on the length of the input), still a
lot of work has to be done for each token. What is worse, the grammar has to be con-
sulted repeatedly and so we expect the speed of the process to depend adversely on the
size of the grammar. Fortunately there is a surprising and fundamental improvement
possible: from the NFA in Figure 5.6 we construct a new automaton with a new set of
states, where each new state is equivalent to a set of old states. Where the original
(non-deterministic) automaton was in doubt after the first a, a situation we represented
as{A, B}, the new automaton firmly knows that after the first a it isin state AB.

The states of the new automaton can be constructed systematically as follows. We
start with the initial state of the old automaton, which is aso theinitial state of the new
one. For each new state we create, we examine its contents in terms of the old states,
and for each token in the language we determine to which set of old states the given set
leads. These sets of old states are then considered states of the new automaton. If we
create the same state a second time, we do not analyse it again. This process is called
the subset construction and results initially in a (deterministic) state tree. The state tree
for the grammar of Figure 5.5 is depicted in Figure 5.9. To stress that it systematically
checks all new states for all symbols, outgoing arcs leading nowhere are also shown.
Newly generated states that have already been generated before are marked with a .

Figure 5.9 Deterministic state tree for the grammar of Figure 5.5

The state tree of Figure 5.9 is turned into a transition diagram by leading the
arrows to states marked [to their first-time representatives and removing the dead
ends. The new automaton is shown in Figure 5.10. When we now use the sentence
abcba as a guide for traversing this transition diagram, we find that we are never in
doubt and that we safely arrive at the accepting state. All outgoing arcs from a state

112 Regular grammars and finite-state automata [Ch.5

Figure 5.10 Deterministic automaton for the grammar of Figure 5.5

bear different symbols, so when following a list of symbols, we are always pointed to
at most one direction. If in a given state there is no outgoing arc for a given symbol,
then that symbol may not occur in that position. If it is, theinput isin error.

There are two things to be noted here. The first is that we see that most of the pos-
sible states of the new automaton do not actually materialize: the old automaton had 5
states, so there were 2°=32 possible states for the new automaton while in fact it has
only 5; states like SB or ABC do not occur. This is usual; athough there are non-
deterministic finite-state automata with n states that turn into a DFA with 2" states,
these are rare and have to be constructed on purpose. The average garden variety NFA
with n states typically resultsin aDFA with less than or around 10* n states.

The second is that consulting the grammar is no longer required; the state of the
automaton together with the input token fully determine the next state. To allow effi-
cient look-up the next state can be stored in a table indexed by the old state and the
input token. The table for our DFA isgivenin Figure 5.11.

input symbol
a b c
S | AB
AB BC | AC
old state
AC | ¢ BC
BC| ¢ AC

Figure5.11 Transition table for the automaton of Figure 5.10

Using such atable, an input string can be checked at the expense of only a few machine
instructions per token. For the average DFA, most of the entries in the table are empty
(cannot be reached by correct input and refer to error states). Since the table can be of
considerable size (300 states times 100 tokens is normal), several techniques exist to
exploit the empty space by compressing the table. Dencker, Diirre and Heuft [Misc
1984] give a survey of some techniques.

The parse tree obtained looks as follows:

S~~~
ONONBONONO

Sec. 5.3] Parsing with aregular grammar 113

which is not the original parse tree. If the automaton is used only to recognize the input
string this is no drawback; if the parse tree is required, it can be reconstructed in the
following fairly obvious bottom-up way. Starting from the last state ¢ and the last token
a, we conclude that the last right-hand side (the “handle” in bottom-up parsing) was a.
Since the state was BC, a combination of B and C, we look through the rules for B and C.
We find that a derived from G >a, which narrows down BCto C. The right-most b and
the C combine into the handle bC which in the set { A, G must derive from A. Working
our way backwards we find the parsing:

This method again requires the grammar to be consulted repeatedly; moreover, the way
back will not always be so straight as in the above example and we will have problems
with ambiguous grammars. Efficient full parsing of regular grammars has received
relatively little attention; substantial information can be found in Ostrand, Paull and
Weyuker [FS 1981].

5.3.2 Non-standard notation
A regular grammar in standard form can only have rules of the form A - aand A - aB.
We shall now first extend our notation with two other types of rules, A - B and A - €,
and show how to construct NFA’'s and DFA’s for them. We shall then turn to regular
expressions and rules that have regular expressions as right-hand sides (for instance,
P~ a"bQ) and show how to convert them into rules in the extended notation.

The grammar in Figure 5.12 contains examples of both new types of rules; Figure
5.13 presents the usual trio of NFA, state tree and DFA for this grammar. First consider
the NFA. When we are in state S we see the expected transition to state B on the token
a, resulting in the standard rule S- >aB. The non-standard rule S- >A indicates that we
can get from state S to state A without reading (or producing) a symbol; we then say
that we read the zero-length string € and that we make an e-transition (or e-move). The
rule A- >aA creates a transition from A to A marked a and B- >bB does something simi-
lar. The standard rule B- >b creates a transition marked b to the accepting state, and the
non-standard rule A- >¢ creates an e-transition to the accepting state. e-transitions
should not be confused with e-rules: unit rules create e-transitions to non-accepting
states and e-rules create e-transitions to accepting states.

S -> A
S -> aB
A -> aA
A -> ¢
B -> bB
B -> b

Figure 5.12 Sample regular grammar with e-rules

114 Regular grammars and finite-state automata [Ch.5

Figure 5.13 NFA (a), state tree (b) and DFA (c) for the grammar of Figure 5.12

Now that we have constructed an NFA with e-moves, the question arises how we
can process the e-moves to obtain a DFA. To answer this question we use the same rea
soning as before; in Figure 5.6, after having seen an a we did not know if we were in
state A or state B and we represented that as { A, B}. Here, when we enter state S, even
before having processed a single symbol, we aready do not know if we are in states S,
Aor 9, since the latter two are reachable from S through e-moves. So theinitial state of
the DFA is already compound: SA®. We now have to consider where this state leads to
for the symbols a and b. If we are in S then a will bring usto Band if we arein A/ a
will bring us to A. So the new state includes A and B, and since ¢ is reachable from A
through e-moves, it also includes ¢ and its name is ABO. Continuing in this vein we can
construct the complete state tree (Figure 5.13(b)) and collapse it into a DFA (c). Note
that all states of the DFA contain the NFA state ¢, so the input may end in all of them.

The set of NFA states reachable from a given state through e-moves is called the
e-closure of that state. The e-closure of, for instance, Sis{S, A, ¢}.

5.3.3 DFA’sfrom regular expressions

As mentioned in Section 2.3.3, regular languages are often specified by regular expres-
sions rather than by regular grammars. Examples of regular expressions are [O-
9] *(. [0-9]) ? which should be read as “one or more symbols from the set 0 through
9, possibly followed by a dot which must then be followed by one or more symbols
from O through 9” (and which represents numbers with possibly a dot in them) and
(ab) *(p| @) ¥, which should be read as “zero or more strings ab followed by one or
more p’sor q's’ (and which is not directly meaningful). The usua forms occurring in
regular expressions are recalled in the table in Figure 5.14; some systems provide more
possibilities, some provide fewer. In computer input, no difference is generally made

Sec. 5.3]

Form

Parsing with aregular grammar 115

Meaning

R, followed by R,
Rl or R2

zeroor moreR's
oneor moreR's
zero or oneR

R

any symbol from the set abc - - -

the symbol a itself

Name

concatenation

alternative

optional sequence (Kleene star)
(proper) sequence

optional

nesting

Figure 5.14 Some usual elements of regular expressions

between the metasymbol * and the symbol *, etc. Specia notations will be necessary if
the language to be described contains any of the symbols| * +? () [or].

Rule pattern

replaced by:

(standard)
(standard)
(extended standard)
(extended standard)

P-aT

P.@l|blc|)"

Figure 5.15 Transformations on regular grammars

A regular expression can be converted into a regular grammar by using the
transformations given in Figure 5.15; this regular grammar can then be used to produce
a DFA as described above. There is also a method to create an NFA directly from the
regular expression, which requires, however, some preprocessing on the regular expres-
sion; see Thompson [FS 1968].

We shall illustrate the method using the expression (ab) *(p| @) *. Our method

116 Regular grammars and finite-state automata [Ch.5

will also work for regular grammars that contain regular expressions (like A — ab” cB)
and we shall in fact immediately turn our regular expression into such a grammar:

S -> (ab)’(pla)*

The T in the transformations stands for an intermediate non-terminal, to be chosen

fresh for each application of atransformation; we use A, B, C - - - in the example since
that isless confusing than T4, To, T3, - - -. The transformations are to be applied until
al rules are in (extended) standard form.

The first transformation that applies is P-R"---, which replaces

S¢>(ab) " (pl) * by

SS -> A O
A -> (ab) A
A -> (plg”

The first rule is already in the desired form and has been marked [J. The transforma-
tionsP-(R)--- andP -a - -- work on A->(ab) Aand result in

A -> aB [l
B -> bA O

Now the transformation P - R* - - - must be applied to A->(p| q) ¥, yielding

A -> (plg C

C -> (plg C
C -> ¢ O

The € originated from the fact that (p| g) * in A->(p| q) ¥ is not followed by anything
(of which € is a faithful representation). Now A->(p| q) Cand G >(p| q) C are easily
decomposed into

A -> pcC N
A -> gCcC [
cC -> pC O
C -> gCcC_ H

The complete extended-standard version can be found in Figure 5.16; an NFA and
DFA can now be derived using the methods of Section 5.3.1 (not shown).

5.34 Fast text search using finite-state automata

Suppose we are looking for the occurrence of a short piece of text, for instance, a word
or a name (the “search string”) in a large piece of text, for instance, a dictionary or an
encyclopedia. One naive way of finding a search string of length n in atext would be to
try to match it to the characters 1 to n; if that fails, shift the pattern one position and try
to match against characters 2 to n+1, etc., until we find the search string or reach the
end of the text. (Dictionaries and encyclopedias may be organized better, but afile con-
taining a million business letters almost certainly would not.)

Sec. 5.3] Parsing with aregular grammar 117

->
->
->
->
->
->
->
->

000> >m>f
0000 >m

MO TOTTO >

Figure 5.16 Extended-standard regular grammar for (ab) *(plq)*

Finite automata offer a much more efficient way to do text search. We derive a
DFA from the string, let it run down the text and when it reaches an accepting state, it
has found the string. Assume for example that the search string is ababc and that the
text will contain only @’s, b’s and ¢’s. The NFA that searches for this string is shown
in Figure 5.17(a); it was derived as follows. At each character in the text there are two
possibilities: either the search string starts there, which is represented by the chain of
states going to the right, or it does not start there, in which case we have to skip the
present character and return to the initial state. The automaton is non-deterministic,
since when we see an a in state A, we have two options: to believe that it is the start of
an occurrence of ababc or not to believe it.

c
O O O O Os O

Figure 5.17 NFA (a), state tree (b) and DFA (c) to search for ababc

118 Regular grammars and finite-state automata

[Ch.5

Using the traditional techniques, this NFA can be used to produce a state tree (b)
and then a DFA (c). Figure 5.18 shows the states the DFA goes through when fed the

text aabababca.

Figure 5.18 Sate transitions of the DFA of Figure 5.17(c) on aabababca

This application of finite-state automata is known as the Aho and Corasick biblio-
graphic search algorithm [FS 1975]. Like any DFA, it requires only a few machine
instructions per character. As an additional bonus it will search for severa strings for
the price of one. The DFA corresponding to the NFA of Figure 5.19 will search simul-
taneously for Kawabat a, M shi ma and Tani zaki ; note that three different accepting

states result, <>K, <>Mand <>T.

Figure 5.19 Example of an NDA for searching multiple strings

The Aho and Corasick algorithm is not the last word in string search; it f%ces stiff

competition from the Rabin-Karp algorithmJr and the Boyer-Moore agorithm
of which will be treated here, since they are based on different principles.

TRM. Karp, M.O. Rabin, “Efficient randomized pattern matching algorithms’, Technical Re-
port TR-31-81, Harvard Univ., Cambridge, Mass., 1981. We want to find a string S of length |
inatext T. First we choose a hash function H that assigns alarge integer to any string of length |
and calculate H(S) and H(T[1..1]). If they are equal, we compare Sand T[1..1]. If either fails
we calculate H(T[2.1+1]) and repeat the process. The trick is to choose H so that
H(T[p+1..p+l]) can be caculated cheaply from H(T[p..p+l-1]). See also Sedgewick
[tCSBooks 1988], page 289.

Robert S. Boyer, J. Strother Moore, “A fast string searching algorithm”, Commun. ACM, vol.
20, no. 10, p. 762-772, Oct 1977. We want to find a string Sof length | in atext T and start by
positioning S[1] at T[1]. Now suppose that T[I] does not occur in S; then we can shift Sto
Tl +1] without missing a match, and thus increase the speed of the search process. This princi-
ple can be extended to blocks of more characters. See also Sedgewick [CSBooks 1988], page
286.

neither

6

Generdl directional top-down methods

In this chapter, we will discuss top-down parsing methods that try to rederive the input
sentence by prediction. As explained in Section 3.3.1, we start with the start symbol
and try to produce the input from it. At any point in time, we have a sentential form
that represents our prediction of the rest of the input sentence:

rest of input

prediction

This sentential form consists of both terminals and non-terminals. If aterminal symbol
isin front, we match it with the current input symbol. If anon-terminal isin front, we
pick one of its right-hand sides and replace the non-terminal with this right-hand side.
This way, we all the time replace the left-most non-terminal, and in the end, if we
succeed, we have imitated aleft-most production.

6.1 IMITATING LEFT-MOST PRODUCTIONS

Let us see how such a rederiving process could proceed with an example. Consider the
example grammar of Figure 6.1. This grammar produces all sentences with equal
numbers of a’sand b’s.

Figure 6.1 A grammar producing all sentences with equal numbersof a’sandb’s

Let ustry to parse the sentence aabb, by trying to rederive it from the start-symbol, S.
Sis our first prediction. The first symbol of our prediction is a non-terminal, so we
have to replace it by one of its right-hand sides. In this grammar, there are two choices
for S: either we use the rule S- >aB, or we use the rule S- >bA. The sentence starts with
an a and not with a b, so we cannot use the second rule here. Applying the first rule

120 General directional top-down methods [Ch.6

leaves us with the prediction aB. Now, the first symbol of the prediction is a terminal
symbol. Here, we have no choice:

a abb
a B

We have to match this symbol with the current symbol of the sentence, which isalso an
a. So, we have a match, and accept the a. This leaves us with the prediction B for the
rest of the sentence: abb. The first symbol of the prediction is again a non-terminal, so
it has to be replaced by one of its right-hand sides. Now, we have three choices. How-
ever, the first and the second are not applicable here, because they start with ab, and
we need another a. Therefore, we take the third choice, so nhow we have prediction
aBB:

a bb

‘a|
‘ala BB

Again, we have a match with the current input symbol, so we accept it and continue
with the prediction BB for bb. Again, we have to replace the left-most B by one of its
choices. The next terminal in the sentence is ab, so the third choice is not applicable
here. This still leaves us with two choices, b and bS. So, we can either try them both,
or be a bit more intelligent about it. If we would take bS, then we would get at least
another a (because of the S), so this cannot be the right choice. So, we take the b
choice, and get the prediction bB for bb. Again, we have a match, and this leaves us
with prediction B for b. For the same reason, we take the b choice again. After match-
ing, this leaves us with an empty prediction. Luckily, we are also at the end of the input
sentence, so we accept it. If we had made notes of the production rules used, we would
have found the following derivation:

S -> aB -> aaBB -> aabB -> aabb.

Figure 6.2 presents the steps of the parse in atree-form. The dashed line separates the

already processed part from the prediction. All the time, the left-most symbol of the

prediction is processed.
This example demonstrates several aspects that the parsers discussed in this

chapter have in common:

o we aways process the left-most symbol of the prediction;

o if this symbol is a terminal, we have no choice: we have to match it with the
current input symbol or reject the parse;

g If this symbol is a non-terminal, we have to make a prediction: it has to be
replaced by one of its right-hand sides. Thus, we aways process the left-most
non-terminal first, so we get aleft-most derivation.

Sec. 6.1] The pushdown automaton 121

Figure 6.2 Production trees for the sentence aabb

6.2 THE PUSHDOWN AUTOMATON

The steps we have taken in the example above resemble very much the steps of a so-
caled pushdown automaton. A pushdown automaton (PDA) is an imaginary
mathematical device that reads input and has control over a stack. The stack can con-
tain symbols that belong to a so-called stack alphabet. A stack isalist that can only be
accessed at one end: the last symbol entered on the list (“pushed”) is the first symbol to
be taken from it (“popped’). Thisis also sometimes caled a “first-in, last-out” list, or
aFILO list: thefirst symbol that goesin isthe last symbol to come out. In the example
above, the prediction works like a stack, and this is what the pushdown automaton uses
the stack for too. We therefore often call this stack the prediction stack. The stack also
explains the name “pushdown” automaton: the automaton “pushes’ symbols on the
stack for later processing.

The pushdown automaton operates by popping a stack symbol and reading an
input symbol. These two symbols then in general give us a choice of severa lists of
stack symbols to be pushed on the stack. So, there isamapping of (input symbol, stack
symbol) pairs to lists of stack symbols. The automaton accepts the input sentence
when the stack is empty at the end of the input. If there are choices (so an (input sym-
bol, stack symbol) pair maps to more than one list), the automaton accepts a sentence
when there are choices that lead to an empty stack at the end of the sentence.

This automaton is modeled after context-free grammars with rules in the so-called

122 General directional top-down methods [Ch. 6

Greibach Normal Form (GNF). In this normal form, all grammar rules have either the
foom A-aor A-aBB, - -B,, withaatermina and A, B4, ... , B, non-terminals.
The stack symbols are, of course, the non-terminals. A rule of the form
A-aB; B, - B, leads to a mapping of the (a, A) pair to the list B;B, - - - B,,. This
means that if the input symbol is an a, and the prediction stack starts with an A, we
could accept the a, and replace the A part of the prediction stack with B1B, - - - B,,. A
rule of the form A - a leads to a mapping of the (a, A) pair to an empty list. The auto-
maton starts with the start symbol of the grammar on the stack. Any context-free
grammar that does not produce the empty string can be put into Greibach Normal
Form. Most books on formal language theory discuss how to do this (see for instance
Hopcroft and Ullman [Books 1979]).

The example grammar of Figure 6.1 already is in Greibach Normal Form, so we
can easily build a pushdown automaton for it. The automaton is characterized by the
mapping shown in Figure 6.3.

(a, 9 -> B
(b, 9 -> A
(a, A ->

(a, A -> S
(b, A -> AA
(b, B ->

(b, B -> S
(a, BB -> BB

Figure 6.3 Mapping of the PDA for the grammar of Figure 6.1

An important remark to be made here is that many pushdown automata are non-
deterministic. For instance, the pushdown automaton of Figure 6.3 can choose between
an empty list and an S for the pair (a, A). In fact, there are context-free languages for
which we cannot build a deterministic pushdown automaton, although we can build a
non-deterministic one. We should also mention that the pushdown automata as dis-
cussed here are a simplification of the ones we find in automata theory. In automata
theory, pushdown automata have so-called states, and the mapping is from (state, input
symbol, stack symbol) triplets to (state, list of stack symbols) pairs. Seen in this way,
they are like finite-state automata (discussed in Chapter 5), extended with a stack.
Also, pushdown automata come in two different kinds. some accept a sentence by
empty stack, others accept by ending up in a state that is marked as an accepting state.
Perhaps surprisingly, having states does not make the pushdown automaton concept
more powerful. Pushdown automata with states still only accept languages that can be
described with a context-free grammar. In our discussion, the pushdown automaton
only has one state, so we have taken the liberty of leaving it out.

Pushdown automata as described above have several shortcomings that must be
resolved if we want to convert them into parsing automata. Firstly, pushdown auto-
mata require us to put our grammar into Grelbach Normal Form. While grammar
transformations are no problem for the formal linguist, we would like to avoid them as
much as possible, and use the original grammar if we can. Now we could relax the
Greibach Normal Form requirement a little by also allowing terminals as stack sym-
bols, and adding

Sec. 6.2] The pushdown automaton 123

(a,a -

to the mapping for al terminals a. We could then use any grammar al of whose right-
hand sides start with aterminal. We could also split the steps of the pushdown automa-
ton into separate “match” and “predict” steps, as we did in the example of Section 6.1.
The “match” steps then correspond to usage of the

aa -
mappings, and the “predict” step then correspondsto a

(A - -
mapping, that is, a non-terminal on the top of the stack is replaced by one of its right-
hand sides, without consuming a symbol from the input. For the grammar of Figure

6.1, thiswould result in the mapping shown in Figure 6.4, which isin fact just arewrite
of the grammar of Figure 6.1.

(, 9 -> aB
(, 9 -> DbA
(l A) -> a
(l A) -> asS
(, A -> bAA
(, B -> b
(l B) -> bS
(, B -> aBB
(a, a) ->

(b, b) ->

Figure 6.4 Match and predict mappings of the PDA for the grammar of Figure 6.1

We will see later that, even using this approach, we may have to modify the grammar
anyway, but in the meantime, this looks very promising so we adopt this strategy. This
strategy also solves another problem: e-rules do not need specia treatment any more.
To get Greibach Normal Form, we would have to eliminate them. Thisis not necessary
any more, because they now just correspond to a

(’ A) -

mapping.

The second shortcoming is that the pushdown automaton does not keep a record of
the rules (mappings) it uses. Therefore, we introduce an analysis stack into the auto-
maton. For every prediction step, we push the non-terminal being replaced onto the
analysis stack, suffixed with the number of the right-hand side taken (numbering the
right-hand sides of a non-terminal from 1 to n). For every match, we push the matched
terminal onto the analysis stack. Thus, the analysis stack corresponds exactly to the
parts to the left of the dashed line in Figure 6.2, and the dashed line represents the
separation between the analysis stack and the prediction stack. This results in an

124 General directional top-down methods [Ch. 6

automaton that at any point in time has a configuration as depicted in Figure 6.5. In the
literature, such a configuration, together with its current state, stacks, etc. is sometimes
called an instantaneous description. In Figure 6.5, matching can be seen as pushing the
vertical line to the right.

matched input | rest of input

analysis| prediction

Figure 6.5 An instantaneous description

The third and most important shortcoming, however, is the non-determinism.
Formally, it may be satisfactory that the automaton accepts a sentence if and only if
there is a sequence of choices that leads to an empty stack at the end of the sentence,
but for our purpose it is not, because it does not tell us how to obtain this sequence. We
have to guide the automaton to the correct choices. Looking back to the example of
Section 6.1, we had to make a choice at several points in the derivation, and we did so
based on some ad hoc considerations that were specific for the grammar at hand: some-
times we looked at the next symbol in the sentence, and there were also some points
where we had to ook further ahead, to make sure that there were no more a’s coming.
In the example, the choices were easy, because al the right-hand sides start with a ter-
minal symbol. In general, however, finding the correct choice is much more difficult.
The right-hand sides could for instance equally well have started with a non-terminal
symbol that again has right-hand sides starting with a non-terminal, etc.

In Chapter 8 we will see that many grammars still allow us to decide which right-
hand side to choose, given the next symbol in the sentence. In this chapter, however,
we will focus on top-down parsing methods that work for a larger class of grammars.
Rather than trying to pick a choice based on ad hoc considerations, we would like to
guide the automaton through all the possibilities. In Chapter 3 we saw that there are in
general two methods for solving problems in which there are several aternatives in
well-determined points: depth-first search and breadth-first search. We shall now see
how we can make the machinery operate for both search methods. Since the effects
can be exponential in size, even a small example can get quite big. We will use the
grammar of Figure 6.6, with test input aabc. This grammar generates a rather complex
language: sentences consist either of a number of a’s followed by a number of b’s fol-
lowed by an equal number of c’s, or of a number of a’s followed by an equal number
of b’s followed by a number of ¢’s. Example sentences are for instance: abc, aabbc.

S -> AB| OC
A -> a| aA
B -> bc | bBc
D -> ab| abb
C -> c¢| cC

Figure 6.6 A more complicated example grammar

Sec. 6.2] Breadth-first top-down parsing 125

6.3 BREADTH-FIRST TOP-DOWN PARSING

The breadth-first solution to the top-down parsing problem is to maintain a list of all
possible predictions. Each of these predictions is then processed as described in Sec-
tion 6.2 above, that is, if there isanon-terminal in front, the prediction stack is replaced
by several new prediction stacks, as many as there are choices for this non-terminal. In
each of these new prediction stacks, the non-terminal is replaced by the corresponding
choice. This prediction step is repeated for all prediction stacks it applies to (including
the new ones), until all prediction stacks have aterminal in front. Then, for each of the
prediction stacks we match the terminal in front with the current input symbol, and
strike out all prediction stacks that do not match. If there are no prediction stacks left,
the sentence does not belong to the language. So, instead of one prediction
stack/analysis stack par, our automaton now maintains a list of prediction
stack/analysis stack pairs, one for each possible choice, as depicted in Figure 6.7.

matched input | rest of input

analysisl | predictionl
analysis2 | prediction2

Figure 6.7 An instantaneous description of our extended automaton

The method is suitable for on-line parsing, because it processes the input from left
to right. Any parsing method that processes its input from left to right and results in a
left-most derivation is called an LL parsing method. The first L stands for Left to right,
and the second L for Left-most derivation.

Now, we amost know how to write a parser along these lines, but there is one
detail that we have not properly dealt with yet: termination. Does the input sentence
belong to the language defined by the grammar when, ultimately, we have an empty
prediction stack? Only when the input is exhausted! To avoid this extra check, and to
avoid problems about what to do when we arrive at the end of sentence but haven't fin-
ished parsing yet, we introduce a special so-called end-marker #, that is appended at
the end of the sentence. Also, a new grammar rule S - >S# is added to the grammar,
where S is a new non-terminal that serves as a new start symbol. The end-marker
behaves like an ordinary terminal symbol; when we have an empty prediction, we
know that the last step taken was a match with the end-marker, and that this match suc-
ceeded. This also means that the input is exhausted, so it must be accepted.

6.3.1 Anexample

Figure 6.8 presents a complete breadth-first parsing of the sentence aabc#. At first
there is only one prediction stack: it contains the start-symbol; no symbols have been
accepted yet (a). The step leading to (b) is a smple predict step; there is no other
right-hand side for S . Another predict step leads us to (c), but this time there are two
possible right-hand sides, so we obtain two prediction stacks; note that the difference of
the prediction stacks is also reflected in the analysis stacks, where the different suffixes
of S represent the different right-hand sides predicted. Another predict step with
several right-hand sides leads to (d). Now, all prediction stacks have aterminal on top;

126 General directional top-down methods [Ch.6

(a) aabc# (b) aabc#
S S, | S#
(© aabc# (d) aabc#
S .S, | bt S ,;S,D; | abCG#
S S, | AB# S ,;S,D, | aDhG#
S 152A1 aB#
S |SA, | aAB#
(e a | abc# ® a | abc#
S ,S,Da | bGt S ,;S,Da | bGt
S 151Dza DbGH S 181D2aD1 abbG#
S J.SZAla Bt S 181D2aD2 aDbbG#
S 132Aza ABH S 152A1aBl bc#
S ;S,A)aB, | bBc#
S ;S,AaA | aB#
S ;S,AaA, | aAB#
(9) aa | bc# (h) aa | bc#
S 1SlD2aD1a bbG# S 1SlD2aD1a bbG#
S 1SlD2aD2a DbbGH S 181D2aD2aD1 abbbG#
S 1SZAZaA1a Bt S 181D2aD2aD2 aDbbbG#
S ;S,AaAa | ABH S ;S,AaAaB, | be#
S ;S,AaAaB, | bBc#
S ;S,AaAaA | aB#
S ;S,AaAaA, | aABH
0) aab | c# 0) aab | c#
S 181D2aD1ab bG# S 181D2aD1ab bGH#
S 152A2aA1aBlb c# S 152A2aA1aBlb c#
S 1SzAzaAlasz Bc# S 1SZAza.AlaBZbB1 bcc#
S ;S,A,aAaB,bB, | bBcc#
® aabc | # 0 aabc#
S 152A2aA1aBlbc # S 1SzAzaAlaBlbc#

Figure 6.8 The breadth-first parsing of the sentence aabc#

al happen to match, resulting in (e). Next, we again have some predictions with a
non-terminal in front, so another predict step leads usto (f). The next step is a match
step, and fortunately, some matches fail; these are just dropped as they can never lead
to a successful parse. From (g) to (h) is again a predict step. Another match where,
again, some matches fail, leads usto (i). A further prediction resultsin (j) and then two
matches result in (k) and (1), leading to a successful parse (the predict stack is empty).
The analysisis

Sec. 6.3] Breadth-first top-down parsing 127

S ,S,AaA aB bc#.

For now, we do not need the terminals in the analysis; discarding them gives

S 15%M B,

This means that we get a left-most derivation by first applying rule S ;, thenrule S,,,
thenrule A,, etc., al the time replacing the left-most non-terminal. Check:

S ->S# -> AB# -> aAB# -> aaB# -> aabc#.

The breadth-first method described here was first presented by Greibach [CF
1964]. However, in that presentation, grammars are first transformed into Greibach
Normal Form, and the steps taken are like the ones our initial pushdown automaton
makes. The predict and match steps are combined.

6.3.2 A counterexample: left-recursion

The method discussed above clearly works for this grammar, and the question arises
whether it works for all context-free grammars. One would think it does, because all
possibilities are systematically tried, for al non-terminals, in any occurring prediction.
Unfortunately, this reasoning has a serious flaw that is demonstrated by the following
example: let us see if the sentence ab belongs to the language defined by the ssimple
grammar

S -> S| a

Our automaton starts off in the following state:

ab#
S

As we have a non-terminal at the beginning of the prediction, we use a predict step,
resulting in:

ab#
S, | S#
Now, another predict step resultsin:
ab#
S S, | So#
S .S, | a#

As one prediction again starts with a non-terminal, we predict again:

128 General directional top-down methods [Ch.6

ab#
S 18181 Sbb#
S 18182 ab#
1 att

By now, it is clear what is happening: we seem to have ended up in an infinite
process leading us nowhere. The reason for this is that we keep trying the S- >Sb rule
without ever coming to a state where a match can be attempted. This problem can
occur whenever there is a non-terminal that derives an infinite sequence of sentential
forms, al starting with a non-terminal, so no matches can take place. Asall these sen-
tential forms in this infinite sequence start with a non-terminal, and the number of
non-terminalsisfinite, thereis at least one non-terminal A occurring more than once at
the start of those sentential forms. So, we have: A - -+ - Ad. A non-terminal that
derives a sentential form starting with itself is called left-recursive. Left recursion
comes in two kinds: we speak of immediate |eft-recursion when there is a grammar rule
A5 Aaq, like in the rule S- >Sb; we speak of indirect left-recursion when the recursion
goes through other rules, for instance A - Ba, B - AB. Both forms of left-recursion
can be concealed by e-producing non-terminals. For instance in the grammar

S -> AB
B ->
B -> AB
cC -> &e
A -> ¢

the non-terminals S, B, and C are all left-recursive. Grammars with left-recursive non-
terminals are called left-recursive as well.

If agrammar has no e-rules and no loops, we could still use our parsing scheme if
we use one extra step: if a prediction stack has more symbols than the unmatched part
of the input sentence, it can never derive the sentence (no e-rules), so it can be dropped.
However, this little trick has one big disadvantage: it requires us to know the length of
the input sentence in advance, so the method no longer is suitable for on-line parsing.
Fortunately, left-recursion can be eliminated: given a left-recursive grammar, we can
transform it into a grammar without left-recursive non-terminals that defines the same
language. As left-recursion poses a mgor problem for any top-down parsing method,
we will now discuss this grammar transformation.

6.4 ELIMINATING LEFT-RECURSION

We will first discuss the elimination of immediate left-recursion. We will assume that
e-rules and unit rules aready have been eliminated (see Section 4.2.3.1 and 4.2.3.2).
Now, let A be aleft-recursive rule, and

A - Adap| - [Aap [Br]| - | Bm
be all the rules for A. None of the a; are equal to €, or we would have arule A - A, a

unit rule. None of the 3; are equal to € either, or we would have an e-rule. The senten-
tial forms generated by A using only the A - Aay rules al have the form

Sec. 6.4] Eliminating left-recursion 129
A(Xkl(]kz T C(kj

and as soon as one of the A - [3; rules is used, the sentential form has no longer an A in
front; it has the following form:

Bia, Ok, "+ A

for somei, and somekq, ---, kj, where j could be 0. These same sentential forms are
generated by the following set of rules:

Ahead - By | |PBm
A tail > 01| - |ap

Ataills - A tal Atals | ¢
A - A head A tails

or, without re-introducing e-rules,

Ahead - B1| " |Bm
A tail > dg | | ap
A taills - A tail A tails | A tail
A - A headA tails | A head

where A _head, A tail, and A tails are newly introduced non-terminals. None of the q;
is €, so A tail does not derive €, so A tails is not left-recursive. A could still be left-
recursive, but it is not immediately left-recursive, because none of the f3; start with an
A. They could, however, derive a sentential form starting with an A.

In general, eliminating the indirect left-recursion is more complicated. Theideais
that first the non-terminals are numbered, say Aq, A, - -, A,. Now, for a left-
recursive non-terminal A there is a derivation

with all the time a non-terminal at the left of the sentential form, and repeatedly replac-
ing this non-terminal using one of its right-hand sides. All these non-terminals have a

number associated with them, say i, 15, " - -, iy, ad in the derivation we get the fol-
lowing sequence of numbers. iq,1i2, -, iy, 11. Now, if we did not have any rules
A - Aja with j<i, this would be impossible, because i;<ip< -+ <ip<ip is
impossible.

The idea now isto eliminate al rules of this form. We start with A,. For A, the
only rules to eliminate are the immediately |eft-recursive ones, and we aready have
seen how to do just that. Next, it is A,’s turn. Each production rule of the form
A, - A a isreplaced by the production rules

A, 5 00| - | apa
where

A -ag | - |ap

130 General directional top-down methods [Ch.6

are the A;-rules. This cannot introduce new rules of the form A, - Ay because we
have just eliminated A’s left-recursive rules, and the a;’s are not equal to €. Next, we
eliminate the immediate left-recursive rules of A,. This finishes the work we have to
do for A,. Likewise, we dea with A3 through A,,, in this order, always first replacing
rules A; - Ay, then rules A; -~ A9, etc. We have to obey this ordering, however,
because for instance replacing a A; - A,0 rule could introduce a A; — Azy rule, but not a
A - Ajarule

6.5 DEPTH-FIRST (BACKTRACKING) PARSERS

The breadth-first method presented in the previous section has the disadvantage that it
uses a lot of memory. The depth-first method also has a disadvantage: in its general
form it is not suitable for on-line parsing. However, there are many applications where
parsing does not have to be done on-line, and then the depth-first method is advanta-
geous since it does not need much memory.

In the depth-first method, when we are faced with a number of possibilities, we
choose one and |leave the other possibilitiesfor later. First, we fully examine the conse-
guences of the choice we just made. If this choice turns out to be a failure (or even a
success, but we want al solutions), we roll back our actions until the present point and
continue with the other possibilities.

Let us see how this search technique applies to top-down parsing. Our depth-first
parser follows the same steps as our breadth-first parser, until it encounters a choice: a
non-terminal that has more than one right-hand side lies on top of the prediction stack.
Now, instead of creating a new analysis stack/prediction stack pair, it chooses the first
right-hand side. This is reflected on the analysis stack by the appearance of the non-
terminal involved, with suffix 1, exactly asit was in our breadth-first parser. Thistime
however, the analysis stack is not only used for remembering the parse, but aso for
backtracking.

The parser continues in this way, until a match fails, or the prediction stack is
empty. If the prediction stack is empty, we have found a parse, which is represented by
the analysis stack (we know that the input is also exhausted, because of the end-marker
#). If a match fails, the parser will backtrack. This backtracking consists of the fol-
lowing steps: first, any terminal symbols at the end of the analysis stack are popped
from this stack, and pushed back on top of the prediction stack. Also, these symbols
are removed from the matched input and added to the beginning of the rest of the input
(this is the reversal of the “match” steps), that is, backtracking over aterminal is done
by moving the vertical line backwards, as is demonstrated in Figure 6.9.

Q18 " & |84 agH a18p 81 |4 A
ag | B olap

Figure 6.9 Backtracking over aterminal

Then, there are two possibilities: if the analysis stack is empty, there are no other possi-
bilities to try, and the parsing stops; otherwise, there is a non-terminal on top of the
analysis stack, and the top of the prediction stack corresponds to a right-hand side of

Sec. 6.5] Depth-first (backtracking) parsers 131

this non-terminal. The choice of this right-hand side just resulted in a failed match. In
the latter case, we pop the non-terminal from the analysis stack and replace the right-
hand side part in the prediction stack with this non-terminal (this is the reversal of a
prediction step). Thisisdemonstrated in Figure 6.10.

Q18 " & |84 agH Q18 " & |84y agH
aA| VB alAB

Figure 6.10 Backtracking over a A -y choice

Next, there are again two possibilities: if this was the last right-hand side of this non-
terminal, we have already tried its right-hand sides and have to backtrack further; if
not, we start parsing again, first using a predict step that replaces the non-terminal with
its next right-hand side.

Now, let us try to parse the sentence aabc, this time using the backtracking
parser. Figure 6.11 presents the parsing process step by step; the backtracking steps are
marked with a B. The example demonstrates another disadvantage of the backtracking
method: it can make wrong choices and find out about this only much later. Of course,
it could also start with the right choices and be finished rapidly.

As presented here, the parsing stops when a parsing is found. If we want to find
all parsings, we should not stop when the prediction stack is empty. We can continue
by backtracking just as if we had not found a successful parse, and write down the
analysis stack (that represents the parse) every time that the prediction stack is empty.
Ultimately, we will end with an empty analysis part, indicating that we have exhausted
al analysis possibilities, and the parsing stops.

6.6 RECURSIVE DESCENT

In the previous sections, we have seen several automata at work, using a grammar to
decide the parsing steps while processing the input sentence. Now this is just another
way of stating that these automata use a grammar as a program. Looking at a grammar
as a program for a parsing machine is not as far-fetched as it may seem at first. After
al, agrammar is a prescription for deriving sentences of the language that the grammar
describes, and what we are doing in top-down parsing is rederiving a sentence from the
grammar. This only differs from the classic view of a grammar as a generating device
in that we are now trying to rederive a particular sentence, not just any sentence. Seen
in this way, grammars are programs, written in a programming language with a
declarative style (that is, it specifies what to do, but not the steps that need to be done
to achieve the result).

If we want to write atop-down parser for a certain context-free grammar in one of
the more common programming languages, like Pascal, C, or Modula-2, there are
several options. The first option is to write a program that emulates one of the auto-
mata described in the previous sections. This program can then be fed a grammar and
an input sentence. Thisis a perfectly sound approach and is easy to program. The dif-
ficulty comes when the parser must perform some other actions as parts of the input are
recognized. For instance, a compiler must build a symbol table when it processes a

132 General directional top-down methods [Ch.6
aabc# aabc# aabc#
> e
S S, |S# S S, |DCH#
aabc# a|abc# aabc# B
—
S ,S,D, |abG# S ,S,D,a|bG# S ,S,D, |abC#
aabc# aabc# a|abc#
—
S S, |DCH# S ;S,D, |aDoCH# S ;S,D,a|DbCH#
a|abc# aa|bc# aab |c# B
S ,S,D,aD, |abbC# S ,S,D,aD,a |bbCH S ,SDaDabbG¢
aa|bc# a|abc# a|abc#
—
S ,S,DaDa bbG# S ,S,D,ab; abbC# S ,5,Da le(}t
a|abc# aa|bc# aa|bc# B
S ,S,D,aD, | aDbbCH S ,S,D,aD,a | DbbCH S ,S,DaD,aD, |abbbG#
aa|bc# aa|bc# aa|bc# B
— —
S 151D2aD2a lebC# S 1le2aD2aD2 aDbbbG# S 151D2aD2a DzbbC#
a|abc# a|abc# aabc# B
— —
S 181D2aD2 aDzbe# S 151D2a Dzbc# S 181D2 aDsz#
aabc# aabc# aabc#
—
S ;S, |DG# S, |S# S S, |AB#
aabc# a|abc# a|abc# B
S ;S,A |aB# S ;S,Aa|B# S ;S,AaB, |bc# —
a|abc# a|abc# a|abc# B
S ,SAa|B# S ,S,AaB, |bBc# S ,SAaB#
aabc# aabc# aabc#
—
S 1SA [aB# S 1S |ABH S 1SA, |aABH#
a|abc# a|abc# aa|bc#
—
S 1SzA2a ABH S 1SzAzaA1 aB# S 1SzAzaAla B#
aa|bc# aab |c# aabc |#
—
S ;S,AaAaB; bc# S 152A2aA1aBlb c# S 1SZA2aA1aB1bc #
aabc#
S 1S.ZAZ.':\AlaBlbc#

Figure 6.11 Parsing the sentence aabc

Sec. 6.6] Recur sive descent 133

declaration sequence. This, and efficiency considerations lead to a second option: to
write a special purpose parser for the grammar at hand. Many of these special purpose
parsers have been written, and most of them use an implementation technique called
recursive descent. We will assume that the reader has some programming experience,
and knows about procedures and recursion. If not, this section can be skipped. It does
not describe a different parsing method, but merely an implementation technique that is
often used in hand-written parsers and also in some machine-generated parsers.

6.6.1 A naive approach
As afirst approach, we regard a grammar rule as a procedure for recognizing its left-
hand side. Therule

S -> aB| bA

isregarded as a procedure to recognize an S. This procedure then states something like
the following:

S succeedsif

a succeeds and then B succeeds
or else

b succeeds and then A succeeds

This does not differ much from the grammar rule, but it does not look like a piece of
Pascal or C either. Like a cookbook recipe that usually does not tell us that we must
peel the potatoes, et alone how to do that, the procedure is incomplete.

There are severa bits of information that we must maintain when carrying out
such a procedure. First, there is the notion of a “current position” in the rule. This
current position indicates what must be tried next. When we implement rules as pro-
cedures, this current position is maintained automatically, by the program counter,
which tells us where we are within a procedure. Next, there is the input sentence itself.
When implementing a backtracking parser, we usually keep the input sentence in a glo-
bal array, with one element for each symbol in the sentence. The array must be global,
because it contains information that must be accessible equally easily from all pro-
cedures. Then, there is the notion of a current position in the input sentence. When the
current position in the rule indicates a termina symbol, and this symbol corresponds to
the symbol at the current position in the input sentence, both current positions will be
advanced one position. The current position in the input sentence is also global infor-
mation. We will therefore maintain this position in a global variable, of atype that is
suitable for indexing the array containing the input sentence. Also, when starting arule
we must remember the current position in the input sentence, because we need it for the
“or else” clauses. These must all be started at the same position in the input sentence.
For instance, starting with the rule for S of grammar 6.1, suppose that the a matches the
symbol at the current position of the input sentence. The current position is advanced
and then Bistried. For B, we have arule similar to that of S. Now suppose that B fails.
We then have to try the next choice for S, and backup the position in the input sentence
to what it was when we started the rule for S. This is backtracking, just as we have
seen it earlier.

All this tells us how to deal with one rule. However, usually we are dealing with

134 General directional top-down methods [Ch.6

a grammar that has more than one non-terminal, so there will be more than one rule.
When we arrive at a non-terminal in a rule, we have to execute the rule for that non-
terminal, and, if it succeeds, return to the current invocation and continue there. We
achieve this automatically by using the procedure-call mechanism of the implementa-
tion language.

Another detail that we have not covered yet is that we have to remember the
grammar rules that we use. If we do not remember them, we will not know afterwards
how the sentence was derived. Therefore we note them in a separate list, striking them
out when they fail. Each procedure must keep its own copy of the index in this lit,
again because we need it for the “or else ” clauses: if a choice fails, all choices that
have been made after the choice now failing must be discarded. In the end, when the
rule for S succeeds, the grammar rules left in this list represent a left-most derivation
of the sentence.

Now, let us see how a parser, as described above, works for an example. Let us
consider again grammar of Figure 6.6, and input sentence abbcc. As before, we add a
rule S - >S# to the grammar and a# to the end of the sentence, so our parser starts in
the following state:

Active rules Sentence Parse
1. S -> S# «abc# 1.8 ->S#

Our administration is divided into three parts; the “Active rules’ part indicates the
active rules, with a dot (s) indicating the current position within that rule. The bottom
rule in this part is the rule that we are currently working on. The “Sentence” part indi-
cates the sentence, including a position marker indicating the current position in the
sentence. The “Parse” part will be used to remember the rules that we use (not only the
currently active ones). The entries in this part are numbered, and each entry in the
“Active rules’ part also containsitsindex in the “Parse” part. As we shall see later, this
is needed to backup after having taken awrong choice.

There is only one possibility here: the current position in the procedure indicates
that we must invoke the procedure for S, so let us do so:

Active rules Sentence Parse
1. S -> S -abc# 1.8 ->S#
2 S->.0C| AB sabc# 22S ->DC

Notice that we have advanced the position in the S rule. It now indicates where we
have to continue when we are finished with S (the return address). Now we try the first
aternative for S. Thereis achoice here, so the current position in the input sentence is
saved. We have not made this explicit in the pictures, because this position is already
present in the “ Sentence” -part of the entry that invoked S.

Activerules Sentence Parse
1. S -> S -abc# 1.S ->S#
22 S->DC| AB «abc# 22S->DC
3: D->e<ab| abb «abc# 3D->ab

Now, the first choice for Dis tried. The a succeeds, and next the b also succeeds, so

Sec. 6.6] Recur sive descent 135

we get:
Active rules Sentence Parse
1. S -> S «abc# 1.S -> S#
22 S->DC| AB «abc# 2:.S -> DC
3: D->ab.| abb abe.c# 3:D-> ab

Now, we are at the end of a choice for D. This means that it succeeds, and we remove
this entry from the list of active rules, after updating the current positions in the entry
above. Next, it isC sturn:

Activerules Sentence Parse
1. S ->S# -abc# 1.S ->S#
2 S->DC| AB abe.c# 22S->DC
4. C->.« | cC abe.c# 3D->ab
4.C->c

Now, the ¢ succeeds, so the C succeeds, and then the S also succeeds.

Activerules Sentence Parse
1. S ->S«# abc# 1.8 ->S#
2SS ->DC
3:D->ab

4.C->c

Now, the# also succeeds, and thus S succeeds, resulting in:

Activerules Sentence Parse
1. S -> SH. abct#. 1.S ->S#
2SS ->DC
3:D->ab

4.C->c

The “Parse” part now represents a left-most derivation of the sentence:
S ->S# -> DGt -> abG#t -> abc#.

This method is called recursive descent. Descent, because it operates top-down,
and recursive, because each non-terminal is implemented as a procedure that can
directly or indirectly (through other procedures) invoke itself. It should be stressed that
“recursive descent” is merely an implementation issue, albeit an important one. It
should also be stressed that the parser described above is a backtracking parser,
independent of the implementation method used. Backtracking is a property of the
parser, not of the implementation.

The backtracking method developed above is aesthetically pleasing, because wein
fact use the grammar itself as a program (or we transform the grammar rules into pro-
cedures, which can be done mechanically). There is only one problem: the recursive
descent method, as described above, does not always work! We already know that it
does not work for left-recursive grammars, but the problem is worse than that. For

136 General directional top-down methods [Ch.6

instance, aabc and abcc are sentences that are not recognized, but should be. Parsing
of the aabc sentence gets stuck after the first a, and parsing of the abcc sentence gets
stuck after thefirst c. Yet, aabc can be derived asfollows:

S -> AB -> aAB -> aaB -> aabc,
and abcc can be derived with
S ->DC-> abC -> abcC -> abcc.

So, let us examine why our method fails. A little investigation shows that we
never try the A->aA choice when parsing aabc, because the A- >a choice succeeds.
Such a problem arises whenever more than one right-hand side can succeed, and thisis
the case whenever a right-hand side can derive a prefix of a string derivable from
another right-hand side of the same non-terminal. The method developed so far is too
optimistic, in that it assumes that if a choice succeeds, it must be the right choice. It
does not allow us to backtrack over such a choice, when it was the wrong one. Thisisa
particularly serious problem if the grammar has e-rules, because e-rules aways
succeed. Another consequence of being unable to backup over a succeeding choice is
that it does not allow us to get all parses when there is more than one (this is possible
for ambiguous grammars). Improvement is certainly needed here. Our criterion for
determining whether a choice is the right one clearly is wrong. Looking back at the
backtracking parser of the beginning of this section, we see that that parser does not
have this problem, because it does not consider choices independently of their context.
One can only decide that a choice is the right one if taking it results in a successful
parse; even if the choice ultimately succeeds, we have to try the other choices as well if
we want all parses. In the next section, we will develop a recursive-descent parser that
solves all the problems mentioned above. Meanwhile, the method above only works
for grammars that are prefix-free. A non-terminal A is prefix-free if A % x and A % xy,
where x and y are strings of terminal symbols, impliesthat y = €. A grammar is called
prefix-freeif al its non-terminals are prefix-free.

6.6.2 Exhaustive backtracking recursive descent
In the previous section we saw that we have to be careful not to accept a choice too
early; it can only be accepted when it leads to a successful parse. Now this demand is
difficult to express in a recursive-descent parser; how do we obtain a procedure that
tells us whether a choice leads to a successful parse? In principle, there are infinitely
many of these procedures, depending on the sentential form (the prediction) that must
derive the rest of the input. We cannot just write them all. However, at any point dur-
ing the parsing process we are dealing with only one such sentential form: the current
prediction, so we could try to build a parsing procedure for this sentential form dynami-
cally, during parsing. Many programming languages offer a useful facility for this pur-
pose: procedure parameters. One procedure can accept a procedure as parameter, and
cal it, or pass it on to another procedure, or whatever other things one does with pro-
cedures. Some languages (for instance Pascal) require these procedures to be named,
that is, the actual parameter must be declared as a procedure; other languages, like
Algol 68, alow a procedure body for an actual parameter.

Let us see how we can write a parsing procedure for a symbol X, given that it is

Sec. 6.6] Recur sive descent 137

passed a procedure, which we will call tail, that parses the rest of the sentence (the part
that follows the X). Thisis the approach taken for all non-terminals, and, for the time
being, for terminals as well.

The parsing procedure for aterminal symbol a is easy: it matches the current input
symbol with a; if it succeeds, it advances the input position, and calls the tail parame-
ter; then, when tail returns, it restores the input position and returns.

Obvioudly, the parsing procedure for a non-termina A is more complicated. It
depends on the type of grammar rule we have for A. The simplest caseisA -¢€. Thisis
implemented as a call to tail. The next smple case is A - X, where X is either atermi-
nal or a non-terminal symbol. To deal with this case, we must remember that we
assume that we have a parsing procedure for X, so the implementation of this case con-
sists of acall to X, with the tail parameter. The next caseis A - XY, with X and Y sym-
bols. The procedure for X expects a procedure for “what comes after the X" as parame-
ter. Here, this parameter procedure is built using the Y and the tail procedures. we
create a new procedure out of these two. This, by itself, is a ssmple procedure: it calls
Y, with tail as parameter. If we call this procedure Y _tail, we can implement A by cal-
ling X with Y_tail as parameter.Jr And finally, if the right-hand side contains more than
two symbols, this technique has to be repeated: for arule A - X1 X5 - - - X, we create a
procedure for X, - -+ X, and tail using a procedure for X3 - - - X, and tail, and so on.
Finally, if we have a choice, that is, we have A - a |3, the parsing procedure for A has
two parts. one part for a, followed by a call to tail, and another part for 3, followed by
acall totail. We have aready seen how to implement these parts. If we only want one
parsing, al parsing procedures may be implemented as functions that return either false
or true, reflecting whether they result in a successful parse; the part for (3 is then only
started if the part for a, followed by tail, fails. If we want all parses, we have to try
both choices.

Applying this technique to all grammar rules almost results in a parser. Only, we
don’t have a starting point yet; thisis easily obtained: we just call the procedure for the
start-symbol, with the procedure for recognizing the end-marker as parameter. This
end-marker procedure is probably a bit different from the others, because this is the
procedure where we finally find out whether a parsing attempt succeeds.

Figure 6.12 presents a fully backtracking recursive-descent parser for the gram-
mar of Figure 6.6, written in Pascal. The program has a mechanism to remember the
rules used, so these can be printed for each successful parse. Figure 6.13 presents a
sample session with this program.

{$C+: distingui sh between upper and | ower case }
progr am par se(i nput, output);
{ This is an exhaustive backtracki ng recursive-descent parser that will
correctly parse according to the grammar
S -> D C| AB
A - | aA
B->bc| bBc

T For some programmi ng languages this is difficult. The problem is that tail must be accessible
from Y _tail. Therefore, Y _tail should be a local procedure within the procedure for A. But,
some languages do not allow for local procedures (for instance C), and others do not allow local
procedures to be passed as parameters (like Modula-2). Some extensive trickery is required for
these languages, but thisis beyond the scope of this book.

138 General directional top-down methods [Ch.6

D->ab]| aDb

C->c| cC
It inplenents proper backtracking by only checking one synbol at a
time and passing the rest of the alternative as a paraneter for
evaluation on a lower level. A nore naive backtracking parser wll not
accept e.g. aabc.

const infinity = 100; { large enough }

type str = packed array[1..10] of char;

var tp: integer; { index in text }
length: integer; { nunber of synbols in text }
rp: integer; { index in rules }
text: array [1..infinity] of char; { input text }
rules: array [1..infinity] of str; { store rules used }

{ admnistration of rules used }
procedure pushrule (s: str); beginrp :=rp + 1; rules[rp] :=s end;
procedure poprule; beginrp :=rp - 1 end;

procedure endnmark; { recogni ze end and report success }
var i: integer;
begin if text[tp] ='# then begin
witeln(’ Derivation:’);
for i :=1torp do witeln(’ ", rules[i]);
end
end;

procedure a(procedure tail); { recognize an 'a’ and call tail }
beginif text[tp] ='a then begintp :=tp + 1; tail; tp:=tp - 1 end end;

procedure b(procedure tail); { recognize a’'b’ and call tail }
beginif text[tp] ='b then begintp :=tp + 1; tail; tp:=tp - 1 end end;

procedure c(procedure tail); { recognize a'c¢’ and call tail }
begin if text[tp] ='c’ then begintp :=tp + 1; tail; tp:=tp - 1 end end;

procedure A(procedure tail); { recognize an A and call tail }
{ procedures for the alternative tails }
procedure t; begin tail end;
procedure At; begin A(tail) end;

begi n
pushrule(’ A -> a "); a(t); poprul e;
pushrule(’A->aA '); a(A); poprule
end;
procedure B(procedure tail); { recognize a'B and call tail }
procedure ct; begin c(tail) end;
procedure Bct;
procedure ct; begin c(tail) end;
begin B(ct) end;
begi n

pushrule(’B ->bc '); b(ct); poprule;
pushrule(’B -> bBc '); b(Bct); poprule

Sec. 6.6] Recur sive descent 139

end;
procedure D(procedure tail); { recognize a'D and call tail }
procedure bt; begin b(tail) end;
procedure Dbt;
procedure bt; begin b(tail) end;
begin D(bt) end;
begi n
pushrule('D->ab '); a(bt); poprule;
pushrule(’D -> alb '); a(Dbt); poprule
end;
procedure ((procedure tail); { recognize a'C and call tail }
procedure t; begin tail end;
procedure Q; begin ((tail) end;
begi n
pushrule('C ->c¢ "); c(t); poprule;
pushrule(’C->cC '); c(Ct); poprule
end;
procedure S(procedure tail); { recognize a’'S and call tail }
procedure Q; begin ((tail) end;
procedure Bt; begin B(tail) end;
begi n
pushrule(’S ->DC '); DC); poprule;
pushrule(’S -> AB '); A(Bt); poprule
end;

function readl i ne: bool ean;

begi n
wite(’>"); length := 1;
if not eof then
begin while not eoln do begin
read(text[length]); length := length + 1;
end;
readln; readline := true
end
else readline := fal se;
end;

procedur e par ser;
begin text[length] :="'#; tp:=1; rp :=0; S endmark) end;

begi n whil e readline do parser end.

Figure 6.12 A parser for the grammar of Figure 6.6

6.7 DEFINITE CLAUSE GRAMMARS

In the previous sections, we have seen how to create parsers that retain much of the ori-
ginal structure of the grammar. The programming language Prolog allows us to take
this even one step further. Prolog has its foundations in logic. The programmer
declares some facts about objects and their relationships, and asks questions about
these. The Prolog system uses a built-in search and backtrack mechanism to answer

140 General directional top-down methods [Ch.6

> aabc

Deri vati on:
S->AB
A -> aA
A->a
B -> bc

> abcc

Deri vati on:
S ->DC
D->ab
C->cC
C->c¢

> abc

Deri vati on:
S ->DC
D->ab
C->c¢

Deri vati on:
S->AB
A->a
B -> bc

Figure 6.13 A session with the program of Figure 6.12

the questions with “yes’ or “no”. For instance, if we have told the Prolog system about
the fact that atable and a chair are pieces of furniture, asfollows:

furniture(table).
furniture(chair).

and we then ask if abread is a piece of furniture:

| ?- furniture(bread).
the answer will be “no”, but the answer to the question

| ?- furniture(table).
will, of course, be “yes’. We can also use variables, which can be either instantiated
(have a value), or not. Variables start with a capital letter or an underscore (). We
can use them for instance as follows:

| ?- furniture(X).

This is asking for an instantiation of the variable X. The Prolog system will search for
apossible instantiation and respond:

X = tabl e

We can then either stop by typing a RETURN, or continue searching by typing a

Sec. 6.7] Definite Clause grammars 141

semicolon (and then a RETURN). In the last case, the Prolog system will search for
another instantiation of X.

Not every fact is as simple as the one in the example above. For instance, a Pro-
log clause that could tell us something about antique furniture is the following:

antique furniture(Qoj, Age) :- furniture(Qoj), Age>100.

Here we see a conjunction of two goals: an object Cbj with age Age is an antique piece
of furniture if it isapiece of furniture AND its age is more than a 100 years.
An important data structure in Prolog is the list. The empty list isdenoted by [] ,
[a] isalistwithheada andtail [],[a, b, c] isalist withheada and tail [b, c] .
Many Prolog systems allow us to specify grammars. For instance, the grammar of
Figure 6.6, looks like the one in Figure 6.14, when written in Prolog. The terminal
symbols appear as lists of one element.

% Qur exanple grammar in Definite A ause Gamrmar fornat.

sn --> dn, cn.

sn --> an, bn.

an -->[4q].

an -->[a], an.

bn -->[b], [c].

bn -->[b], bn, [c].
cn -->[c].

cn -->[c], cn.

dn -->1[a], [b].

dn -->1Ja], dn, [Db].

Figure 6.14 An example grammar in Prolog

The Prolog system tranglates these rules into Prolog clauses, aso sometimes called
definite clauses, which we can investigate with thel i sti ng question:

| ?- listing(dn).

dn(_3, _4) :-
c(_3,a,_13),
c(_13,b, _4).
dn(_3, 4) :-
c(_3,a,_13),
dn(_13, 14),
c(_14,b, 4).
yes

| ?- listing(sn).

sn(_3, 4) :-

142 General directional top-down methods [Ch.6

dn(_3, 13),
cn(_13, _4).
sn(_3, 4) :-
an(_3, 13),
bn(_13, _4).

yes

We see that the clauses for the non-terminals have two parameter variables. The first
one represents the part of the sentence that has yet to be parsed, and the second one
represents the tail end of the first one, being the part that is not covered by the current
invocation of this non-terminal.

The built-in c-clause matches the head of its first parameter with the second
parameter, and the tail of this parameter with the third parameter. A sample Prolog
session with this grammar is presented below:

& prol og

GProlog version 1.5

| ?- [grani].

graml consulted 968 bytes .133333 sec.

yes

We have now started the Prolog system, and requested it to consult the file containing
the grammar. Here, the grammar residesin afile called gr ani.

| ?- sn(A[]).
A=1[ab,c] ;
A=1J[ab,c,c] ;

A=1[ab,c,c,c]

yes
We have now asked the system to generate some sentences, by passing an uninstan-
tiated variable to sn, and requesting the system to find other instantiations twice. The
Prolog system uses a depth-first searching mechanism, which is not suitable for sen-
tence generation. It will only generate sentences starting with an a, followed by ab,
and then followed by an ever increasing number of c’s.

| ?- sn([a,b,c],[]).

yes
| ?- sn([a,a b,c],[]).

yes

Sec. 6.7] Definite Clause grammars 143

| ?- sn([a,b,c,c],[]).

yes
| ?- sn([a,a,a,b,b,c,c,c],[]).

no
| 2- halt.

[Prolog execution halted]
&

Here we have asked the system to recognize some sentences, including two on which
the naive backtracking parser of Section 6.6.1 failed: aabc and abcc. This session
demonstrates that we can use Definite Clause Grammars for recognizing sentences, and
to alesser extent also for generating sentences.

Cohen and Hickey [CF 1987] discuss this and other applications of Prolog in
parsers in more detail. For more information on Prolog, see Programming in Prolog by
William F. Clocksin and Christopher S. Méellish (Springer-Verlag, Berlin, 1981).

v

General bottom-up parsing

As explained in Section 3.3.2, bottom-up parsing is conceptually very smple. At all
times we are in the possession of a sentential form that derives from the input text
through a series of left-most reductions (which mirrored right-most productions).
There is a cut somewhere in this sentential form which separates the already reduced
part (on the left) from the yet unexamined part (on the right). See Figure 7.1. The part
on the left is called the “stack” and the part on the right “rest of input”. The latter con-
tains terminal symbols only, since it is an unprocessed part of the original sentence,
while the stack contains a mixture of terminals and non-terminals, resulting from
recognized right-hand sides. We can complete the picture by keeping the partial parse
trees created by the reductions attached to their non-terminals. Now all the terminal
symbols of the origina input are still there; the terminals in the stack are one part of
them, another part is semi-hidden in the partial parse trees and the rest is untouched in
the rest of the input. No information is lost, but some structure has been added. When
the bottom-up parser has reached the situation where the rest of the input is empty and
the stack contains only the start symbol, we have achieved a parsing and the parse tree
will be dangling from the start symbol. This view clearly exposes the idea that parsing
is nothing but structuring the input.

STACK REST OF INPUT
———————————— e — — — — — — — — m — mm —— ———— - - —
terminals CuUT terminals
and onl
non-terminals y

tgN Loty NNt fty tytg

partial parse
trees

Figure 7.1 The structure of a bottom-up parse

The cut between stack and rest of input is often drawn as a gap, for clarity and
since in actual implementations the two are often represented quite differently in the

Ch. 7] General bottom-up parsing 145

parser.

tgN tetg NNt [ttty

tgN ety Ny tity | oty

Figure 7.2 A shift move in a bottom-up automaton

tgN tetgN Nt [ttty

Figure 7.3 A reduce move in a bottom-up automaton

Our non-deterministic bottom-up automaton can make only two moves: shift and
reduce; see Figures 7.2 and 7.3. During a shift, a (terminal) symbol is shifted from the
rest of input to the stack; t , is shifted in Figure 7.2. During a reduce move, a number
of symbols from the right end of the stack, which form the right-hand side of arule for
a non-terminal, are replaced by that non-terminal and are attached to that non-terminal
as the partial parse tree. N.Nt , is reduced to R in Figure 7.3; note that the original
N.N,t , are still present inside the partial parse tree. There would, in principle, be no
harm in performing the instructions backwards, an unshift and unreduce, although they
would seem to move us away from our goal, which is to obtain a parse tree. We shall
see that we need them to do backtracking.

At any point in time the machine can either shift (if there is an input symbol |eft)
or not, or it can do one or more reductions, depending on how many right-hand sides
can be recognized. If it cannot do either, it will have to resort to the backtrack moves,

146 General bottom-up parsing [Ch.7

to find other possibilities. And if it cannot even do that, it is finished, and has found al
(zero or more) parsings.

7.1 PARSING BY SEARCHING

The only problem left is how to guide the automaton through all of the possibilities.
Thisis easily recognized as a search problem, which can be handled by a depth-first or
a breadth-first method. We shall now see how the machinery operates for both search
methods. Since the effects are exponential in size, even the smallest example gets quite
big and we shall use the unrealistic grammar of Figure 7.4. The test input isaaaab.

1. Ss -> aShb
2. S -> Sab
3. S -> aaa

Figure 7.4 A simple grammar for demonstration purposes

(@) [daaab (k asbd (9 /Siblj
(b) aM@aab 437 aaa
Bab () asb () Sab
© aana Lx A
(d) aaa, (@b
(m) aaajzalb (W Sdab
() aaaza; aa:}
(n) aaajlab
() aaazazbll © S@b (v) aaallab
(9) aaajastb a/aa (w) aallaab
(hy aS[b (p) Salbd (X) alkaaab
aag} aaa
(y) [Caaaab
(i) aSp,0 (@) Sibzu
aaja aaa
() S (rn 1
4o &b
aa,a éaz}

3

Figure 7.5 Sages for the depth-first parsing of aaaab

7.1.1 Depth-first (backtracking) parsing

Refer to Figure 7.5, where the gap for a shift is shown as [and that for an unshift as[l.
At first the gap is to the left of the entire input (a) and shifting is the only alternative;
likewise with (b) and (c). In (d) we have a choice, either to shift, or to reduce using rule
3; we shift, but remember the possible reduction(s); the rule numbers of these are

Sec. 7.1] Parsing by searching 147

shown as subscripts to the symbols in the stack. Idem in (e€). In (f) we have reached a
position in which shift fails, reduce fails (there are no right-hand sides aaaab, aaab,
aab, ab or b) and there are no stored alternatives. So we start backtracking by unshift-
ing (g). Here we find a stored aternative, “reduce by 3", which we apply (h), deleting
the index for the stored alternative in the process, now we can shift again (i). No more
shifts are possible, but a reduce by 1 gives us a parsing (j). After having enjoyed our
success we unreduce (K); note that (k) only differs from (i) in that the stored alternative
1 has been consumed. Unshifting, unreducing and again unshifting brings us to (n)
where we find a stored aternative, “reduce by 3”. After reducing (0) we can shift
again, twice (p,). A “reduce by 2" produces the second parsing (r). The rest of the
road is barren: unreduce, unshift, unshift, unreduce (v) and three unshifts bring the
automaton to a halt, with the input reconstructed (y).

(a1 initial (f1) aaaab shiftedfrom el
(b)) a shifted from al (f2) Sab shifted from e2
bad

(c1) aa shifted from bl
(f3y aSb shifted from e3

(d1) aaa shifted fromcl /\
aaa
(2 s reduced from d1
\ (f49 S reduced from f2 =
aaa
o>
(el) aaaa shifted fromdl éazs
(e2) Sa shifted from d2 (f5) S reduced from f3 =
baa 4o
a2
(e3) aS reduced from el
aaz}

Figure 7.6 Stages for the breadth-first parsing of aaaab

7.1.2 Breadth-first (on-line) parsing

Breadth-first bottom-up parsing is ssimpler than depth-first, at the expense of a far
larger memory requirement. Since the input symbols will be brought in one by one
(each causing a shift, possibly followed by some reduces), our representation of a par-
tial parse will consist of the stack only, together with its attached partial parse trees.
We shall never need to do an unshift or unreduce. Refer to Figure 7.6. We start our
solution set with only one empty stack (al). Each parse step consist of two phases; in
phase one the next input symbol is appended to the right of all stacks in the solution set;
in phase two all stacks are examined and if they allow one or more reductions, one or
more copies are made of it, to which the reductions are applied. This way we will never
miss a solution. The first and second a are just appended (b1, c1), but the third alows a
reduction (d2). The fourth causes one more reduction (e2) and the fifth gives rise to
two reductions, each of which produces a parsing (f4 and f5).

148 General bottom-up parsing [Ch.7

7.1.3 A combined representation

The configurations of the depth-first parser can be combined into a single graph; see
Figure 7.7(a) where numbers indicate the order in which the various shifts and reduces
are performed. Shifts are represented by lines to the right and reduces by upward
arrows. Since a reduce often combines a number of symbols, the additional symbols are
brought in by arrows that start upwards from the symbols and then turn right to reach
the resulting non-terminal. These arrows constitute at the same time the partial parse
tree for that non-terminal. Start symbols in the right-most column with partial parse
trees that span the whole input head complete parse trees.

Figure 7.7 The configurations of the parsers combined

If we complete the stacks in the solution sets in our breadth-first parser by
appending the rest of the input to them, we can also combine them into a graph, and,
what is more, into the same graph; only the action order as indicated by the numbersis
different, as shown in Figure 7.7(b). This is not surprising, since both represent the
total set of possible shifts and reduces; depth-first and breadth-first are just two dif-
ferent ways to visit all nodes of this graph. Figure 7.7(b) was drawn in the same form
as Figure 7.7(a); if we had drawn the parts of the picture in the order in which they are
executed by the breadth-first search, many more lines would have crossed. The picture
would have been equivalent to (b) but much more complicated to ook at.

7.1.4 A dightly morerealistic example

The above algorithms are relatively easy to understand and impl ement’ and although
they require exponential time in general, they behave reasonably well on a number of
grammars. Sometimes, however, they will burst out in a frenzy of senseless activity,
even with an innocuous-looking grammar (especially with an innocuous-looking gram-
mar!). The grammar of Figure 7.8 produces algebraic expressions in one variable, a,
and two operators, + and - . Qis used for the operators, since O(oh) looks too much like
0 (zero). This grammar is unambiguous and for a- a+a it has the correct production
tree

T See, for instance, Hext and Roberts [CF 1970] for Domolki’s method to find all possible
reductions simultaneously.

Sec. 7.1] Parsing by searching 149

which restricts the minus to the following a rather than to a+a. Figure 7.9 shows the
graph searched while parsing a- a+a. It contains 108 shift lines and 265 reduce arrows
and would fit on the page only thanks to the exceedingly fine print the phototypesetter
iscapable of. Thisisexponential explosion.

->
->
->
->
->
-> -

.-0,0'I'IITIITI(Ig/)
+ 9 TImm

Figure 7.8 A grammar for expressions in one variable

7.2 TOP-DOWN RESTRICTED BREADTH-FIRST BOTTOM-UP PARSING

In spite of their occasionally vicious behaviour, breadth-first bottom-up parsers are
attractive since they work on-line, can handle left-recursion without any problem and
can generaly be doctored to handle e-rules. So the question remains how to curb their
needless activity. Many methods have been invented to restrict the search breadth to at
most 1, at the expense of the generality of the grammars these methods can handle; see
Chapter 9. A method that will restrict the fan-out to reasonable proportions while still
retaining full generality was developed by Earley [CF 1970].

7.2.1 TheEarley parser without look-ahead

When we take a closer look at Figure 7.9, we see after some thought that many reduc-
tions are totally pointless. It is not meaningful to reduce the third a to E or S since these
can only occur at the end if they represent the entire input; likewise the reduction of
a-a to Sis absurd, since S can only occur at the end. Earley noticed that what was
wrong with these spurious reductions was that they were incompatible with a top-down
parsing, that is: they could never derive from the start symbol. He then gave a method
to restrict our reductions only to those that derive from the start symbol. We shall see
that the resulting parser takes at most n® units of time for input of length n rather than
c".

Earley’s parser can also be described as a breadth-first top-down parser with
bottom-up recognition, which is how it is explained by the author [CF 1970]. Since it
can, however, handle left-recursion directly but needs special measures to handle ¢-
rules, we prefer to treat it as a bottom-up method.

We shall again use the grammar from Figure 7.8 and parse the input a- ata. Just
as in the non-restricted algorithm, we have at all times a set of partial solutions which
ismodified by each symbol we read. We shall write the sets between the input symbols

150 General bottom-up parsing [Ch.7

s
E
F
Q aFEs
s A 2 .
¢« aFE
£S
! e
Q aFEs
1 a5
T 2 23S
Q a + aFES
Q 2 _es
! oF
S g s
S ar
gs
h aFEs
aF
Q FES
I aEs
Q a s
A aF
a +
1 ’ E
; pa NFES
a ES
! oF
S g s
P aft
gS
4 aFEs
aF
Q FES
I aEs
T % 2 s
+ a S
a aFE
Q S
4 aF
S g S
¢ atr
gS
h aFE
aF
Q FES
§ s
T P 2 S
= - a + a gS
E !
Q S
A aF
s L 2
¢ aFE
gS
i aFEg
aF
Q FES
4 afs
aF
| 9 s
Q a ¥ aFEs
Q aFEs
s Iy a .
P aFE
gs
4 aFEs
aF
Q FES
4 af s
aF
| 0 s
F - a + aFES
Q ales
s A a .
C— aFt
gS
4 aFEs
aF
Q FES
4 af s
aF
I Q Fs
4 aF g
a E
Q o
Q ES
4 aF
S a s
SgE
) E
+ a S
gE
Q ales
4 aF g
gE
Q a s
A aF
a +
a -

Figure 7.9 The graph searched while parsing a- a+a

Sec. 7.2] Top-down restricted breadth-first bottom-up parsing 151

as we go; we have to keep earlier sets, since they will still be used by the algorithm.
Unlike the non-restricted algorithm, in which the sets contained stacks, the sets consist
of what is technically known as items, or Earley items to be more precise. An itemisa
grammar rule with agap in its right-hand side; the part of the right-hand side to the left
of the gap (which may be empty) has already been recognized, the part to the right of
the gap is predicted. The gap is traditionally shown as a fat dot: «. Items are for
instance: E- >«EQF, E- >E«(F, E- >EQF, E- >EQF., F- >a., etc. It is unfortunate when a
vague every-day term gets endowed with a very specific technical meaning, but the
expression has taken hold, so it will have to do. An Earley itemis an item with an indi-
cation of the position of the symbol at which the recognition of the recognized part
started. Notations vary, but we shall write @ after the item (read: “at n”). If the set at
the end of position 7 contains the item E- >E«QF@3, we have recognized an E in posi-
tions 3, 4, 5, 6, 7 and are looking forward to recognizing .

The sets of items contain exactly those items &) of which the part before the dot
has been recognized so far and b) of which we are certain that we shall be able to use
the result when they will happen to be recognized in full (but we cannot, of course, be
certain that that will happen). If a set contains the item E- >E«(F@3, we can be sure that
when we will have recognized the whole right-hand side EQF, we can go back to the set
at the beginning of symbol number 3 and find there an item that was looking forward to
recognizing an E, i.e., that had an E with a dot in front of it. Since that is true recur-
sively, no recognition will be in vain.

7.2.1.1 The Scanner, Completer and Predictor

The construction of an item set from the previous item set proceeds in three phases.
The first two correspond to those of the non-restricted agorithm, where they were
called “shift” and “reduce”; here they are called “ Scanner” and “Completer”. The third
isnew and isrelated to the top-down component; it is called “Predictor”.

compl etedIO

items
completed
by o,

items after
previous o) act/predp
symbol P active
] items
Itemset, after o
" predicted
items
= items;etp

Figure 7.10 The Earley items sets for one input symbol

The Scanner, Completer and Predictor deal with four sets of items for each token
in the input. Refer to Figure 7.10, where the input symbol o, at position p is sur-
rounded by the four sets: itemset, 1, which contains the items available just before ay;
completed,, the set of items that have become completed due to op; active,, which
contains the non-completed items that passed op; and predicted,, the set of newly
predicted items. The sets active, and predicted, together form itemset,; the internal

152 General bottom-up parsing [Ch.7

division will be indicated in the drawings by adotted line. Initialy, itemset,_, isfilled
(as aresult of processing 0,-1) and the other sets are empty; the construction of item-
Set is special.

The Scanner looks at oy, goes through itemset,_; and makes copies of al items
that contain <o (all other items are ignored); in those, the part before the dot was
already recognized and now o is recognized. Consequently, the Scanner changes «o
into o.. If the dot is now at the end, it stores the item in the set completed,; otherwise
it storesit in the set active,,.

Next the Completer inspects completed,,, which contains the items that have just
been recognized completely and can now be reduced. This reduction goes as follows.
For each item of theform R - - - « @n the Completer goes to itemset,,,—1, and calls the
Scanner; the Scanner, which was used to work on the o, found in the input and
itemset, -1, is now directed to work on the R recognized by the Completer and
itemset,,,—;. It will make copies of al itemsin itemset,,,_; featuring a <R, replace the «R
by Re and store them in either completed,, or active,, as appropriate. This can add
indirectly recognized items to the set completed,, which means more work for the
Completer. After awhile, all completed items have been reduced, and the Predictor’s
turn has come.

The Predictor goes through the sets active, (which was filled by the Scanner) and
predicted, (which is empty initially), and considers al non-terminas which have a dot
in front of them; these we expect to see in the input. For each expected (predicted)
non-terminal N and for each rule for that non-terminal N - P - - -, the Predictor adds an
item N «P --- @+1 to the set predicted,. This may introduce new predicted non-
terminals (for instance, P) in predicted, which cause more predicted items. After a
while, this too will stop.

The sets active, and predicted,, together form the new itemset,. If the completed
set for the last symbol in the input contains an item S— - - - « @, i.e., an item spanning
the entire input and reducing to the start symbol, we have found at |east one parsing.

Now refer to Figure 7.11, which shows the items sets of the Earley parser working
on a- a+a. The initia active item set activeg is {S->«E@L}, indicating that thisis the
only item that can derive directly from the start symbol. The Predictor first predicts
E- >ECF@, from this E- >«EQF@ and E- >«F@L (but the first one is in the set aready)
and from the last one F- >sa@l. This gives itemset .

The Scanner working on itemset 5 and scanning for an a, only catches F- >ea@l,
which it turns into F- >a«@ and stores in completed ;. This not only means that we
have recognized and reduced an F, but also that we have a buyer for it. The Completer
goes to the set itemset o and copies all items that have «F. Result: one item, E- >«F@L,
which turns into E- >Fe@ and is again stored in completed ;. More work for the Com-
pleter, which will now copy items containing <E; result: two items, S- >«E@L which
becomes S >E«@ and goes to the completed set, and E- >«EQF@ which becomes
E- >E«(F@ and which becomes the first and only member of active,. The completion
of Syields no new information.

The Predictor working on active; has an easy job: «Qcauses two items for Q both
with @, since that is where recognition will have started, if it occurs at all. Nothing
spectacular happens until the Scanner processes the second a; from itemset 5 it extracts
F->ea@ which gives F->a«@ which is passed to the Completer (through com-
pleteds). The latter sees the reduction of a to F starting at position 3, goes to itemset »
to see who ordered an F, and finds E- >EQ-F@L; given the F, thisturnsinto E- >EQF-@L,

Sec. 7.2] Top-down restricted breadth-first bottom-up parsing 153

completed; completed,
act/pred E_ >i.g completed, E >aEEJ: g
0 >She - > (]
S>E @ S >E.@ S>E. @
B SR
E >.EQF8 & atpred, "2 P @, oypred, B
F>a @ ESEGF@ = ;E?Fg . ESEGd
= itemset,, OsET@ o OsE @
Q> @ 2 Q> @
= itemset1 = itemset3
completed,, completed

F>a. @
E >EQF-@

+4 act/pred4 a5 S>E. @
E>EQF@ active

F>a @
= ftemset E>EC@

Figure 7.11 Items sets of the Earley parser working on a- a+a

which in its turn signals the reduction to E of the substring from 1 to 3 (again through
completed 3). The Completer checks itemsety and finds two clients there for the E:
S >«E@ and E- >«EQF@L; the first ends up as S- >E«@ in completed 5, the second as
E- >E.QF@ in actives.

After the last symbol has been processed by the Scanner, we still run the Com-
pleter to do the final reductions, but running the Predictor is useless, since there is noth-
ing to predict any more. Note that the parsing started by calling the Predictor on the ini-
tial active set and that there is one Predictor/Scanner/Completer action for each sym-
bol. Since the last completed set indeed contains an item S- >E«@L, there is at least one
parsing.

7.2.1.2 Constructing a parsetree
All this does not directly give us a parse tree. As is more often the case in parser con-
struction (see, for instance, Section 4.1) we have set out to build a parser and have
ended up building a recognizer. The intermediate sets, however, contain enough infor-
mation about fragments and their relations to construct a parse tree easily. As with the
CYK parser, asimple top-down Unger-type parser can serve for this purpose, since the
Unger parser is very interested in the lengths of the various components of the parse
tree and that is exactly what the sets in the Earley parser provide. In his 1970 article,
Earley gives a method of constructing the parse treg(s) while parsing, by keeping with
each item a pointer back to the item that caused it to be present. Tomita [CF 1986, p.
74-77] has, however, shown that this method will produce incorrect parse trees on cer-
tain ambiguous grammars.

From the set completed s in Figure 7.11, which is the first we inspect after having
finished the set construction, we see that there is a parse possible with S for a root and
extending over symbols 1 to 5; we designate the parse root as S;_¢ in Figure 7.12.

154 General bottom-up parsing [Ch.7

Given the completed item S->E«@L in completed 5 there must be a parse node E_ s
which is completed at 5. Since all items completed after 5 are contained in completed s,
we scan the latter to find a completed E starting at 1; we find E- >SEQF«@L.. This gives
us parse tree (a), where the values at the question marks are still to be seen. Since items
are recognized at their right ends, we start by finding a parse for the F,,_¢, to be found
in completeds. We find F- >a«@, giving us parse tree (b). It suggests that we find a
parse for Q,_, completed after 4; in completed 4 we find Q >++@. Consequently Q,_,
IS Q4 4 and the E,_, in (b) must be E;_5. This makes us look in completeds for an

.@, Where we find E- >EQF. @ We now have parse tree (c), and, using the
same technlques we easily complete it (d).

1-5 1-5
i $
S B
/N /N
B.» Q. Fus B @4 Fss
$
(@ (b) ag
S1.5 Si5
PN PN
ST Qs Fss S Qs Fss
/N i VERN !
E., @, F3 + & B, @, Fs * &
Vo
(© Fii -2 a3
$
a, (d)

Figure 7.12 Construction of the parse trees

Sec. 7.2] Top-down restricted breadth-first bottom-up parsing 155

7.2.1.3 Space and time requirements

It is interesting to have alook at the space and time needed for the construction of the
sets. First we calculate the maximum size of the sets just after symbol number p. There
isonly afixed number of different items, I, limited by the size of the grammar; for our
grammar it is | =14. However, each item can occur with any of the additions @ to
@ +1, of which there are p+1. So the number of items in the set itemset,, is limited to
I x(p+1). The exact calculation of the maximum number of items in each of the setsis
complicated by the fact that different rules apply to the first, last and middle items.
Disregarding these complications, we find that the maximum number of items in all
itemsets up to p is roughly | xp?/2. The same applies to the completed sets. So, for an
input of length n, the memory requirement is O(n?), as with the CYK algorithm. In
actual practice, the amount of memory used is often far less than this theoretical max-
imum. In our case all sets together could conceivably contain about 14x5%=350 items,
with which the actual number of 4+3+3+1+2+3+3+1+2+3+1=26 items compares very
favourably.

Although a set at position p can contain a maximum of O(p) items, it may require
an amount of work proportional to p? to construct that set, since each item could, in
principle, be inserted by the Completer once from each preceding position. Under the
same simplifying assumptions as above, we find that the maximum number of actions
needed to construct all sets up to p is roughly | xp3/6. So the total amount of work
involved in parsing a sentence of length n with the Earley algorithm is O(n3), asit is
with the CYK agorithm. Again, in practice it is much better: on many grammars,
including the one from Figure 7.8, it will work in linear time (O(n)) and on any unam-
biguous grammar it will work in O(n?). In our example, a maximum of about
1453 /6800 actions might be required, compared to the actual number of 28 (both
items for Ein predicted o were inserted twice).

It should be noted that once the calculation of the sets is finished, only the com-
pleted sets are consulted. The active and predicted sets can be thrown away to make
room for the parse tree(s).

The practical efficiency of this and the CYK algorithms is not really surprising,
since in normal usage most arbitrary fragments of the input will not derive from any
non-terminal. The sentence fragment “letter into the upper left-most” does not
represent any part of speech, nor does any fragment of it of a size larger than one. The
0O(n?) and O(n®) bounds only materialize for grammars in which almost all non-
terminals produce almost all substrings in amost all combinatorially possible ways, as
for instance in the grammar S- >SS, S- >X.

7.2.2 Therelation between the Earley and CYK algorithms
The similarity in the time and space requirement between the Earley and the CYK
algorithm suggest a deeper relation between the two and indeed there is one. The Ear-
ley sets can be accommodated in a CYK-like grid; see Figure 7.13. To stress the simi-
larity, the sets are distributed over diagonals of boxes slanting from north-west to
south-east. Since the columns indicate the beginnings of possibly recognized frag-
ments, all items with the same @ come in the same column. This arrangement assigns
a natural position to each item. Completed items are drawn in the top left corner of a
box, active items in the bottom right corner. Predicted items have not yet recognized
anything and live in the bottom layer.

When we compare this picture to that produced by the CYK parser (Figure 7.14)

156 General bottom-up parsing [Ch.7

length
recognized
E- >EQF
S >E
° part of
@ comple-
E- >E-
03 ted
P/ part of
4 active
E- >EQF C \Set
E- >EQF p
S >E
3
E- >E-CF @
2
E- >EQH @
F>a Q >- F>a Q>+ F>a
E->F
1 S >E
E- >E-CF
S— >IE Q- Set+ F- >ea Q- Set+ F- >ea
. E>EF Q> Q >.- predict-
E ZE ions

v N N N

a - a, *, ag

Figure 7.13 The Earley sets represented in CYK fashion

we see correspondences and differences. Rather than having items, the boxes contain
non-terminals only. All active and predicted items are absent. The left-hand sides of the
completed items also occur in the CYK picture, but the latter features more recognized
non-terminals, from the Earley picture we know that these will never play arole in any
parse tree. The costs and the effects of the top-down restriction are clearly shown.

The correspondence between the Earley and the CYK algorithms has been
analysed by Graham and Harrison [CF 1976]. This has resulted in a combined algo-
rithm described by Graham, Harrison and Ruzzo [CF 1980].

7.2.3 Ambiguous sentences

Calculating the sets for a parsing of an ambiguous sentence does not differ from that
for an unambiguous one. Some items will be inserted more than once into the same set,
but that can happen even with unambiguous sentences. The parse trees will be faith-
fully produced by the Unger parser; when searching a completed set for items of the

Sec. 7.2] Top-down restricted breadth-first bottom-up parsing 157

length
recognized a
5 s
@
4
@
E E
3 S S @
2
@
F F F
1 E Q E Q E
S S S
a, T2 a, +, a5

Figure 7.14 CYK setsfor the parsing of Figure 7.11

form A= -+ -« @, it may find several. Each will produce a different parse tree (or set
of parse trees if further ambiguities are found). There may be exponentially many parse
trees (even though the work to produce the sets is limited to O(n?)) or even infinitely
many of them. Infinite ambiguity is cut out automatically by the Unger parser, but
exponential numbers of parse trees will just have to be suffered. If they are essentia to
the application, Tomita [CF 1986, p. 17-20] has given an efficient packing method for
them.

The enumeration of all possible parse trees is often important, since many
methods augment the CF grammar with more long-range restrictions formulated out-
side the CF framework, to thus approximate a context-sensitive analysis. To this end,
all parse trees are produced and checked; only those that meet the restrictions are
accepted.

Figure 7.15 shows the sets for the parsing of an ambiguous sentence xxx accord-
ing to the grammar S >SS, S- >Xx; again an artificial example is the only one which can
be shown, for reasons of size. Figure 7.16 gives the parse trees. There is only one root
in completed 3: S >SSe@, leading to parse tree (a). Looking up a parsing for S,
completed 3, we come up with three possibilities: S- >ex@3, S- >SSe@ and S >SS-@
The first and second lead to parse trees (b) and (c) but the third is suppressed by the
Unger parser (it would lead to infinite recursion). No further ambiguities occur and the
final parse trees are found in (d) and (e). All thisisthe same asin the CYK parser.

7.24 Handling e-rules

Like most parsers, the above parser cannot handle e-rules without special measures. €-
rules show up first as an anomaly in the work of the Predictor. While predicting items
of the form A— .« -+ @+1 as a consequence of having a <A in an item in active, or

158

General bottom-up parsing [Ch.7
completed, completed,
completed; S>xe @ S >Xe @
S >SS.@ S >SS.@
act/pred, S >SS.@
S >.55@ act/pred, act/pred,
ssxd’ $>ssa@ [S>5s@] s
= ftemset — $>55@ $>S5@
S>x @ S 5.55@ S >S.S@
= itemset, S>x @ S >s.s@
= itemset

Figure 7.15 Parsing of xxx according to S- >SS, S- >x

NN N

11

-3 12 Sy 3
VAN

(b) (©)

NN

S5 S;3 Si1
SNTOT AN
Xl/ Xl/ Xl/ Xl/

(d) (€
Figure 7.16 Parse tree construction for the parsing of Figure 7.15

predicted,, it may stumble upon an empty prediction A -« @+1; this means that the
non-terminal A has been completed just before symbol number p+1 and this completed
item should be added to the set completed,,, which up to now only contained items with
@ at most. So we find that there was more work for the Completer after all. But that is
not the end of the story. If we now run the Completer again, it will draw the conse-
quences of the newly completed item(s) which have @+1. So it will consult itemsety,,
which is, however, incomplete since items are still being added to its constituents,
active, and predicted,. If it finds occurrences of <A there, it will add copies with A«
instead; part of these may require new predictions to be done (if the dot lands in front

Sec. 7.2] Top-down restricted breadth-first bottom-up parsing 159

of another non-terminal), part may be completed items, which will have to go into
completed, and which mean more work for the Completer. The latter items can have a
starting point lower than p, which brings in items from further back, which may or may
not now be completed through this action or through empty completed items at p.

The easiest way to handle this mare’s nest is to stay calm and keep running the
Predictor and Completer in turn until neither has anything more to add. Since the
number of items is finite this will happen eventually, and in practice it happens rather
sooner than later.

The Completer and Predictor loop has to be viewed as a single operation called
“X” by Graham, Harrison and Ruzzo [CF 1980]. Just like the Predictor it has to be
applied to the initial state, to honour empty productions before the first symbol; just
like the Completer it has to be applied to the fina state, to honour empty productions
after the last symbol.

Part of the effects are demonstrated by the grammar of Figure 7.17 which is based
on a grammar similar to that of Figure 7.8. Rather than addition and subtraction, this
one handles multiplication and division, with the possibility to omit the multiplication
sign: aa means axa.

->
->
->
->
->
->
->

O.-0,0'I'IITIITI(Ig/)
m T X O Tmm

Figure 7.17 A grammar with an e-rule

The parsing isgiven in Figure 7.18. The items pointed at by a-= have been added
by a second pass of the Completer/Predictor. The Q >@, inserted by the Predictor
into completed ; as a consequence of E- >E«QF@L in active, is picked up by the second
pass of the Completer, and is used to clone E- >E«(F@L in active, into E- >EQF@L.
This in turn is found by the Predictor which predicts the item F- >ea@ from it. Note
that we now do have to consider the full active/predicted set after the last symboal; its
processing by the Completer/Predictor may insert an item of theform S->. .. @ in the
last completed set, indicating a parsing.

7.2.5 Prediction look-ahead

In the following we shall describe a series of increasingly complicated (and more effi-
cient) parsers of the Earley type; somewhere along the line we will also meet a parser
that is (almost) identical to the one described by Earley in his paper.

When we go back to Figure 7.11 and examine the actions of the Predictor, we see
that it sometimes predicts items that it could know were useless if it could look ahead
at the next symbol. When the next symbol isa-, it iskind of foolish to proudly predict
Q >«+@. The Predictor can of course easily be modified to check such simple cases,
but it is possible to have a Predictor that will never predict anything obviously errone-
ous, al its predicted items will be either completed or active in the next set. (The pred-
ictions may, however, fail on the symbol after that; after all, it is a Predictor, not an

160 General bottom-up parsing [Ch.7

completed; completed, completed,
F— >Qe @_ F— >Qe @ F- >Qe @-
E‘ >Fo @_ E' >Eq:'@. E— >EQ:'@-
act/pred, S>E @ S>E @ completed, S>E @
S>E @ Q>. @ Q>. @ Q>. @ Q>. @
B SEEa
E >qug a, act/pred; a, act/pred, [3 act/pred, a, act/pred,
Foa @ E>EGFa ESEFa@| [EQF@| [E>ECQ
e - | E>EQF@ | - | E>EQF@ F>a @] - | E>EQFa
- 0 Q>x @ Q>x @ = itemset, Q>x @
Q> @ Q> @ Q> @
F>a @ F>a @ F->a @
= itemset = itemset = itemset

Figure 7.18 Recognition of empty productionsin an Earley parser

Oracle)

To see how we can obtain such a perfect Predictor we need a different example
(after removing Q >«+@ and Q >.- @ from Figure 7.11 all predictions there come
true, so nothing can be gained any more).

Sg -> S
S -> A| AB| B FIRST(S) = {p, q}
A -> C FIRST(A) = {p}
B -> D FIRST(B) = {q}
cC -> p FIRST(C) = {p}
D -> q FIRST(D) = {q}

Figure 7.19 A grammar for demonstrating prediction look-ahead and its FIRST sets

The artificial grammar of Figure 7.19 produces nothing but the three sentences p,
g and pq, and does so in a straightforward way. Theroot isS rather than S, which isa
convenient way to have a grammar with only one rule for the root. This is not neces-
sary but it smplifies the following somewhat, and it is usual in practice.

act/pred
-~ >FjS %l completed, completed,;
S >.AB @ B->D- @ S>sa B>D- @
s-B @ S>B. @ SsET@ s>k @
Asc @] 91 [S->s @ >0 @| h [S->sa@
B>D @ D>q @
G>p @ act/pred, = itemset,, act/pred,
D>q @ = itemset, = itemset,
= Itemset

(a (b)

Figure 7.20 Parsing the sentence q without look-ahead (a) and with look-ahead (b)

The parsing of the sentence q isgiven in Figure 7.20(a) and (b). Starting from the

Sec. 7.2] Top-down restricted breadth-first bottom-up parsing 161

initial item, the Predictor predicts alist of 7 items (a). Looking at the next symboal, q,
the Predictor could easily avoid the prediction G >ep@L, but severa of the other pred-
ictions are also false, for instance, A- >«C@l. The Predictor could avoid the first since it
sees that it cannot begin with q; if it knew that C cannot begin with a q, it could also
avoid A- >C@l. (Note that itemset, is empty, indicating that there is no way for the
input to continue.)

The required knowledge can be obtained by calculating the FIRST sets of al
non-terminals in the grammar (FIRST sets and a method of calculating them are
explained in Sections 8.2.1.1 and 8.2.2.1). The use of the FIRST setsis very effective:
the Predictor again starts from the initial item, but since it knows that g is not in
FIRST(A), it will not predict S->«A@l. Items like A->«C@l do not even have to be
avoided, since their generation will never be contemplated in the first place. Only the
B-line will be predicted (b) and it will consist of three predictions, all of them to the
point.

Sg -> S
S -> A| AB| B FIRST(S) ={¢,p,q}
A -> C FIRST(A) = {&, p}
B -> D FIRST(B) ={q}
C -> p| e FIRST(C) = {¢, p}
D -> q FIRST(D) ={q}

Figure 7.21 A grammar with an e-rule and its FIRST sets

Handling e-rules is easier now: we know for every non-termina whether it can
produce € (in which case € isin the FIRST set of that non-terminal). If we add arule
G >¢ to our grammar (Figure 7.21), the entire picture changes. Starting from the initial
item S ->eS@ (Figure 7.22), the Predictor will still not predict S->«A@ since
FIRST(A) does not contain g, but it will predict S- >«AB@ since FIRST(AB) does con-
tain a q (B combined with the transparency of A). The line continues by predicting
A->C@l, but G >«@ is a completed item and goes into completed 5. When the Com-
pleter starts, it finds G >«@, applies it to A- >«C@ and produces A- >C.@L, likewise
completed. The latter is then applied to S >«AB@ to produce the active item
S >A«B@l. This causes another run of the Predictor, to follow the new «B, but all those
items have already been added.

Bouckaert, Pirotte and Snelling, who have analysed variants of the Earley parsers
for two different look-ahead regimes [CF 1975], show that predictive look-ahead
reduces the number of items by 20 to 50% or even more on “practical” grammars.

7.2.6 Reduction look-ahead

Once we have gone through the trouble of calculating the FIRST sets, we can use them
for a second type of look-ahead: reduction look-ahead. Prediction look-ahead reduces
the number of predicted items, reduction look-ahead reduces the number of completed
items. Referring back to Figure 7.11, which depicted the actions of an Earley parser
without |ook-ahead, we see that it does two silly completions: S- >E«@L in completed ;,
and S- >E«@ in completed 3. The redundancy of these completed items stems from the
fact that they are only meaningful at the end of the input. Now this may seem a very
special case, not worth testing for, but the phenomenon can be put in a more general

162 General bottom-up parsing [Ch.7

completed,)
G> a@a
ASCG @ I‘;’:‘;"ete%
act/pred,) B->D.- @
S ->.S @_ S'>AB' @_
s>»s@| q |58 @
SS.AB @ S->8 @
S>B @
A>C @ act/pred;
EXXEXXEXRXXREARKS!
B->D @ = itemset,
D> @
= itemset

Figure 7.22 Parsing the sentence q with the grammar of Figure 7.21

setting: if we introduce an explicit symbol for end-of-file (for instance, #), we can say
that the above items are redundant because they are followed by a symbol (- and +,
respectively) which is not in the set of symbols the item should be followed by on com-
pletion.

The trick is now to keep, together with any item, a set of symbols which may
come after that item, the reduction look-ahead set; if the item seems completed but the
next symbol is not in this set, the item is discarded. The rules for constructing the
look-ahead set for an item are straightforward, but unlike the prediction look-ahead it
cannot be calculated in advance; it must be constructed as we go. (A limited and less
effective set could be calculated statically, using the FOLLOW sets explained in
8.222)

The initial item starts with a look-ahead set of [#] (the look-ahead set will be
shown between sguare brackets at the end of the item). When the dot advances in an
item, its look-ahead set remains the same, since what happens inside an item does not
affect what may come after it. When a new item is created by the Predictor, a new
look-ahead set must be composed. Suppose the item is

P _. A«BCD [abc] @

and predicted items for B must be created. We now ask ourselves what symbols may
follow the occurrence of B in thisitem. It is easy to see that they are:

g any symbol C can start with,

o If Ccan produce the empty string, any symbol D can start with,

o if D can aso produce the empty string, any of the symbols a, b and c.

Given the FIRST sets for al non-terminals, which can aso tell usif a non-terminal can
produce empty, the resulting new reduction look-ahead set is easily calculated. It isaso
written as FIRST(CD [abc]), which is of course the set of first symbols of anything
produced by CDa |CDb |CDc.

The Earley sets with reduction look-ahead for our example a- a+a are given in
Figure 7.23, where we have added a# symbol in position 6. The calculation of the sets
follow the above rules. The look-ahead of the item E- >«EQF[#+-] @ in predicted
results from its being inserted twice: once predicted from S- >«E #] @, which contri-
butes the #, and once from E- >«EQH ..] @, which contributes the +- from FIRST(Q.

Sec. 7.2] Top-down restricted breadth-first bottom-up parsing 163

The look-ahead ...is used to indicate that the look-ahead is not yet known but does not
influence the look-ahead the item contributes.

Note that the item S- >Eo[#] @ is not placed in completed 1, since the actual sym-
bol ahead (- ,) is not in the item’'s look-ahead set; something similar occurs in com-
pleted 3, but not in completed 5.

completed;
act/pred, F->a.@ completed,,

S>E [# @ ki o=@
E>EF#+] @ a, act/pred, - act/pred, o
E Z.F : zf e E>EF[#+-]1@ E>EQF #+] @

~ o Q> [a @ = itemset,,
= itemset,
il completed completeds
E— >ae @ p " F- e @
- >EQF-@ \ Q>+.@ | E @
a3 act/pred3 +4 act/pred4 a5 S>E @ #6
. (E;EQ:{ #]’.’.'.]. g . . E zEQ‘F{ z:% g _ active,
Set a ea .
Q> [a] @ = itemset,, | E>EC#+-1@ |
= Itemset

Figure 7.23 Item sets with reduction look-ahead

As with prediction look-ahead, the gain in our example is meagre. The effective-
ness in the general case is not easily determined. Earley recommends the reduction
look-ahead, but does not take into account the effort required to calculate and maintain
the look-ahead sets. Bouckaert, Pirotte and Snelling definitely condemn the reduction
look-ahead, on the grounds that it may easily double the number of items to be carried
around, but they count, for instance, E- >eF +-] @ as two items. All in all, since the
gain from reduction look-ahead cannot be large and its implementation cost and over-
head are probably considerable, it is likely that its use should not be recommended.
The well-tuned Earley/CYK parser by Graham, Harrison and Ruzzo [CF 1980] does
not feature reduction look-ahead.

8

Deterministic top-down methods

In Chapter 6 we discussed two genera top-down methods. one using breadth-first
search and one using depth-first search. These methods have in common the need to
search to find derivations, and thus are not efficient. In this chapter and the next we
will concentrate on parsers that do not have to search: there will aways be only one
possibility to choose from. Parsers with this property are called deterministic. Deter-
ministic parsers are much faster than non-deterministic ones, but there is a penalty: the
class of grammars that the parsing method is suitable for, while depending on the
method chosen, is more restricted than that of the grammars suitable for non-
deterministic parsing methods.

In this chapter, we will focus our attention on deterministic top-down methods.
As has been explained in Section 3.6.5, there is only one such method, this in contrast
with the deterministic bottom-up methods, which will be discussed in the next chapter.
From Chapters 3 and 6 we know that in a top-down parser we have a prediction for the
rest of the input, and that this prediction has either atermina symbol in front, in which
case we “match”, or anon-terminal, in which case we “predict”.

It is the predict step that, until now, has caused us so much trouble. The predict
step consists of replacing a non-terminal by one of its right-hand sides, and if we have
no means to decide which right-hand side to select, we have to try them all. One res-
triction we could impose on the grammar, one that immediately comes to mind, is lim-
iting the number of right-hand sides of each non-terminal to one. Then we would need
no search, because no selection would be needed. However, such arestriction is far too
severe, as it would leave us with only finite languages. So, limiting the number of
right-hand sides per non-terminal to one is not a solution.

There are two sources of information that could help us in selecting the right
right-hand side. First of al, there is the partial derivation as it is constructed so far.
However, apart from the prediction this does not give us any information about the rest
of the input. The other source of information is the rest of the input. We will see that
looking at the next symbol or the next few symbols will, for certain grammars, tell us
which choice to take.

Ch. 8] Replacing search by table look-up 165

8.1 REPLACING SEARCH BY TABLE LOOK-UP

Grammars that make it particularly easy to at least limit the search are ones in which
each right-hand side starts with atermina symbol. In this case, a predict step is dways
immediately followed by a match step, matching the next input symbol with the symbol
starting the right-hand side selected in the prediction. This match step can only succeed
for right-hand sides that start with this input symbol. The other right-hand sides will
immediately lead to a match step that will fail. We can use this fact to limit the number
of predictions as follows: only the right-hand sides that start with a terminal symbol
that is equal to the next input symbol will be considered. For instance, consider the
grammar of Figure 6.1, repeated in Figure 8.1, and the input sentence aabb.

Figure 8.1 A grammar producing sentences with an equal number of a’sandb’s

Using the breadth-first top-down method of Chapter 6, extended with the observation
described above, results in the steps of Figure 8.2: (a) presents the start of the automa-
ton; we have added the # end-marker; only one right-hand side of S starts with an a, so
this is the only applicable right-hand side; this leads to (b); next, a match step leads to
(c); the next input symbol isagain an a, so only one right-hand side of B is applicable,
resulting in (d); (e) is the result of a match step; this time, the next input symbol isab,
so two right-hand sides of B are applicable; this leads to (f); (g) is the result of a match
step; again, the next input symbol is a b, so two right-hand sides of B are applicable;
only one right-hand side of S is applicable; this leads to (h), and this again calls for a
match step, leading to (i); now, there are no applicable right-hand sides for S and A,
because there are no right-hand sides starting with a#; thus, these predictions are dead
ends; this leaves a match step for the only remaining prediction, leading to (j).

We could enhance the efficiency of this method even further by precomputing the
applicable right-hand sides for each non-terminal/terminal combination, and enter these
in a table. For the grammar of Figure 8.1, this would result in the table of Figure 8.3.
Such atableis called a parse table.

Despite its title, most of this chapter concerns the construction of these parse
tables. Once such a parse table is obtained, the actions of the parser are obvious. The
parser does not need the grammar any more. Instead, every time a predict step is called
for, the parser uses the next input symbol and the non-terminal at hand as indices in the
parse table. The corresponding table entry contains the right-hand sides that have to be
considered. For instance, in Figure 8.2(e), the parser would use input symbol b and
non-terminal B to determine that it has to consider the right-hand sides B; and B,. If
the corresponding table entry is empty, we have found an error in the input and the
input sentence cannot be derived from the grammar. Using the parse table of Figure
8.3 instead of the grammar of Figure 8.1 for parsing the sentence aabb will again lead
to Figure 8.2. The advantage of using a parse table is that we do not have to check all
right-hand sides of a non-terminal any more, to see if they start with the right terminal
symbol.

Still, we have a search process, albeit a more limited one than we had before. The
search is now confined to the elements of the parse table entries. In fact, we now only

166 Deter ministic top-down methods [Ch.8

(@) aabb#
SH
(b) aabb#
S1 aB#
© a | abb#
Sla B#
(d) a | abb#
SlaB3 aBBt#
(e aa | bb#
SlaB3a BB#
U] aa | bb#
SlaBSaB1 bB#
SlaBSaB2 bSB#
(9) aab | b#
SlaB3aBlb B#

SlaB3asz SB#

(h) aab | b#
SlaB:,;aBle1 b#
SlaB:,;aBle2 bS#
SlaB:,;aszS2 bAB#

0] aabb | #
SlaB3aBlelb #
S aB3aB szb SH
AB#

1 1
SlaB3aszSZb

1)) aabb#
SlaB3aBlelb#

Figure 8.2 The limited breadth-first parsing of the sentence aabb#

a b #
S Slz aB SZ: bA
AlA: a A3: bAA
AZ: as
B BS: aBB Blz b
BZ: bS

Figure 8.3 The parse table for the grammar of Figure 8.1

need a search because of the (A,a) and the (B,b) entry of the table. These entries have
more than one element, so we need the search to determine which one results in a
derivation of the input sentence.

This last observation is an important one: it immediately leads to a restriction that

Sec. 8.1] Replacing search by table look-up 167

we could impose on the grammar, to make the parsing deterministic: we could require
that each parse table entry contain at most one element. In terms of the grammar, this
means that all right-hand sides of a non-terminal start with a different terminal symbol.
A grammar that fulfills this requirement is called a simple LL(1) grammar (S.L(1)), or
an s.grammar. Here, LL(1) means that the grammar allows a deterministic parser that
operates from Left to right, produces a L eft-most derivation, using a look-ahead of one
(1) symboal.
Consider for instance the grammar of Figure 8.4.

S -> aB
B -> b| aBb

Figure 8.4 An example S_L(1) grammar
This grammar generates all sentences starting with a number of a’s, followed by an

equal number of b’s. The grammar isclearly SLL(1). It leads to the parse table of Fig-
ure 8.5.

a b #
S| S;: aB

B BZ: aBb Blz b

Figure 8.5 The parse table for the grammar of Figure 8.4

The parsing of the sentence aabb is presented in Figure 8.6. Again we have added the
end-marker.

aabb# aabb# a|abb#
— — —
SH S1 aB# Sla B#
a|abb# aa|bb# aa|bb#
— — —
SlaB2 aBb# SlaBza Bb# SlaBzaB1 bb#
aab |b# aabb |# aabb#
— —
SlaBZaBlb b# SlaBzaBlbb # SlaBzaBlbb#

Figure 8.6 The SLL(1) parsing of the sentence aabb#

As expected, there is always only one prediction, so no search is needed. Thus, the pro-
cess is deterministic, and therefore very efficient. The efficiency could be enhanced
even further by combining the predict step with the match step that always follows the
predict step.

So, SLL(1) grammars lead to simple and very efficient parsers. However, the res-
trictions that we have placed on the grammar are severe. Not many practical grammars
are SLL(1), although many can be transformed into SLL(1) form. In the next section,

168 Deter ministic top-down methods [Ch.8

we will consider a more general class of grammars that still allows for the same kind of
parser.

82 LL(1) GRAMMARS

For the deterministic top-down parser described in the previous section, the crucial res-
triction placed on the grammar is that all right-hand sides of a non-terminal start with a
different terminal symbol. This ensures that each parse table entry contains at most one
element. In this section, we will drop the requirement that right-hand sides start with a
terminal symbol. We will see that we can still construct a parse table in that case. Later
on, we will see that we can even construct a parse table for grammars with g-rules.

8.2.1 LL(1) grammarswithout e-rules

If agrammar has no e-rules, there are no non-terminals that derive the empty string. In
other words, each non-terminal ultimately derives strings of terminal symbols of length
at least one, and this also holds for each right-hand side. The terminal symbols that start
these strings are the ones that we are interested in. Once we know for each right-hand
side which terminal symbols can start a string derived from this right-hand side, we can
construct a parse table, just as we did in the previous section. So, we have to compute
this set of terminal symbols for each right-hand side.

8211 FIRST, sets
These sets of terminal symbols are called the FIRST ; sets: if we have a non-empty sen-
tential form x, then FIRST () is the set of terminal symbols that can start a sentential
form derived from x in zero or more production steps. The subscript ; indicates that the
set contains single terminal symbols only. Later, we will see FIRST, sets, consisting of
strings of terminal symbols of length at most k. For now, we will drop the subscript ;:
we will use FIRST instead of FIRST,. If x starts with a terminal symbol, then
FIRST(X) is a set that has this symbol as its only member. If x starts with a non-
terminal A, then FIRST(X) is equal to FIRST(A), because A cannot produce €. So, if we
can compute the FIRST set for any non-terminal A, we can compute it for any senten-
tial form x. However, FIRST(A) depends on the right-hand sides of the A-rules: it is
the union of the FIRST sets of these right-hand sides. These FIRST sets may again
depend on the FIRST set of some non-terminal. This could even be A itsdlf, if the rule
is directly or indirectly left-recursive. This observation suggests the iterative process
described below to compute the FIRST sets of all non-terminals:

o Wefirstinitialize the FIRST sets to the empty set.

o Then we process each grammar rule in the following way: if the right-hand side
starts with a terminal symbol, we add this symbol to the FIRST set of the left-
hand side, since it can be the first symbol of a sentential form derived from the
left-hand side. If the right-hand side starts with a non-terminal symbol, we add all
symbols of the present FIRST set of this non-terminal to the FIRST set of the
left-hand side. These are all symbols that can be the first terminal symbol of a
sentential form derived from the left-hand side.

o The previous step is repeated until no more new symbols are added to any of the
FIRST sets.

Eventually, no more new symbols can be added, because the maximum number of ele-

ments in a FIRST set is the number of symbols, and the number of FIRST sets is equal

Sec. 8.2] LL(1) grammars 169

to the number of non-terminals. Therefore, the total number of times that a new sym-
bol can be added to any FIRST set is limited by the product of the number of symbols
and the number of non-terminals.

8.2.1.2 Producing the parse table

With the help of these FIRST sets, we can now construct a parse table for the grammar.
We process each grammar rule A - a in the following way: if a starts with a terminal
symbol a, we add a to the (A,a) entry of the parse table; if a starts with a non-terminal,
we add a to the (A,a) entry of the parse table for all symbolsain FIRST(a).

Now let us compute the parse table for the example grammar of Figure 8.7. This
grammar describes a simple language that could be used as the input language for a
rudimentary consulting system: the user enters some facts, and then asks a question.
There is dso afacility for sub-sessions. The contents of the facts and questions are of
no concern here. They are represented by the word STRI NG which is regarded as a ter-
minal symbol.

Session -> Fact Session

Session -> Question

Session -> (Session) Session
Fact -> | STRING

Question -> ? STRNG

Figure 8.7 An example grammar

We first compute the FIRST sets. Initialy, the FIRST sets are all empty. Then,
we process al grammar rules in the order of Figure 8.7. The rule Sessi on -> Fact
Sessi on results in adding the symbols from FIRST(Fact) to FIRST(Sessi on), but
FIRST(Fact) is still empty. The rule Sessi on -> Questi on results in adding the
symbols from FIRST(Quest i on) to FIRST(Sessi on), but FIRST(Quest i on) is still
empty too. The rule Session -> (Session) Session results in adding (to
FIRST(Sessi on). TheruleFact -> ! STR NGresultsinadding! to FIRST(Fact),
and the rule Question -> ? STR NGresults in adding ? to FIRST(Quest i on). So,
after processing all right-hand sides once, we have the following:

FIRST(Sessi on) | FIRST(Fact) | FIRST(Questi on)
(! ?

Next, we process all grammar rules again. This time, the rule Sessi on -> Fact
Sessi on will result in adding ! (from FIRST(Fact)) to FIRST(Sessi on), the rule
Session -> Question will result in adding ? to FIRST(Sessi on), and no other
changes will take place. So now we get:

FIRST(Session) | FIRST(Fact) | FIRST(Questi on)
(! 2 ! ?

There were some changes, so we have to repeat this process again. This time, there are
no changes, so the table above presents the FIRST sets of the non-terminals. Now we
have all the information we need to create the parse table. We have to add Fact

170 Deter ministic top-down methods [Ch.8

Sessi on to the (Sessi on,a) entry for al terminal symbols a in FIRST(Fact Ses-
si on). The only terminal symbol in FIRST(Fact Session) is!, so we add Fact
Sessi on to the (Sessi on,!) entry. Likewise, we add Quest i on to the (Sessi on,?)
entry. Next we add (Sessi on) Sessi on to the (Sessi on,() entry,! STRI NGto
the (Fact ,!) entry, and ? STR NGto the (Quest i on,?) entry. Thisresultsin the parse
table of Figure 8.8.

! ? () | STRNG | #
Sessi on Fact Session | Question | (Session) Session
Questi on ? STRING
Fact I STRING

Figure 8.8 The parse table for the grammar of Figure 8.7

All parse table entries have at most one element, so the parser will be deterministic. A
grammar without e-rules is called LL(1) if all entries of the parse table, as constructed
above, have at most one element, or, in other words, if for every non-terminal A the
FIRST sets of A are pairwise digoint (no symbol occurs in more than one). We have
lost the S (simplicity) of SLL(1), but the parser is still as simple as before. Producing
the parse table has become more difficult, but we have gained a lot: many practical
grammars are LL (1), or are easily transformed into an LL (1) grammar.

8.2.2 LL(1) grammarswith e-rules

Not allowing for e-rules is, however, still a major drawback. Certain language con-
structs are difficult, if not impossible, to describe with an LL(1) grammar without ¢-
rules. For instance, non-terminals that describe lists of terminals or non-terminals are
difficult to express without e-rules. Of course, we could write

A-aA|a

for alist of a's, but thisisnot LL(1). Compare also the grammar of Figure 8.7 with the
one of Figure 8.9. They describe the same language, but the one of Figure 8.9 is much
Clearer.

Session -> Facts Question | (Session) Session
Facts -> Fact Facts | ¢
Fact -> | STRNG

Question -> ? STRNG

Figure 8.9 The grammar of Figure 8.7 rewritten

8.2.2.1 Extending the FIRST sets

The main problem with allowing e-rules is that the FIRST sets, as we have discussed
them in the previous section, are not sufficient any more. For instance, the Fact s
non-terminal in the grammar of Figure 8.9 has an e-rule. The FIRST set for this right-
hand side is empty, so it does not tell us on which look-ahead symbols we should
choose this right-hand side. Also, in the presence of e-rules, the computation of the
FIRST sets itself needs some revision. For instance, if we compute the FIRST set of

Sec. 8.2] LL(1) grammars 171

the first right-hand side of Sessi on using the method of the previous section, ? will
not be a member, but it should, because Fact s can derive € (it is transparent), and then
? starts a sentential form that can be derived from Sessi on.

Let us first extend the FIRST definition to also deal with e-rules. This time, in
addition to terminal symbols, € will also be allowed as a member of a FIRST set. We
will now aso have to deal with empty sentential forms, so we will sometimes need the
FIRST(€) set. We will define it as the set containing only the empty string €. We will
also add € to the FIRST set of a sentential form if this sentential form derivese.

These may seem minor changes, but the presence of e-rules affects the computa-
tion of the FIRST sets. FIRST(uqu, -+ u,) isnow equa to FIRST(u;), € excluded,
but extended with FIRST(u, --- u,) if up derives €. In particular, FIRST(ug) (=
FIRST(u)) is equal to FIRST(u), € excluded, but extended with FIRST(g) (= {€}) if u
derivese.

Apart from this, the computation of the revised FIRST sets proceeds in exactly the
same way as before. When we need to know whether a non-terminal A derives €, we
have two options. we could compute this information separately, using the method
described in Section 4.2.1, or we could check if € isamember of the FIRST(A) set asit
is computed so far. This last option uses the fact that if a non-terminal derives €, € will
ultimately be a member of its FIRST set.

Now let us compute the FIRST sets for the grammar of Figure 8.9. They are first
initialized to the empty set. Then, we process each grammar rule: the rule Sessi on - >
Facts Question results in adding the terminal symbols from FIRST(Facts) to
FIRST(Sessi on). However, FIRST(Fact s) is still empty. The rule Sessi on -> (
Session) Session resultsin adding (to FIRST(Sessi on). Then, the rule Fact s
-> Fact Fact s results in adding the symbols from FIRST(Fact) to FIRST(Fact s),
and the rule Fact s -> ¢ results in adding € to FIRST(Fact s). Then, the rule Fact
-> I STR NGresults in adding ! to FIRST(Fact), and the rule Question -> ?
STRI NG results in adding ? to FIRST(Quest i on). This completes the first pass over
the grammar rules, resulting in:

FIRST(Session) | FIRST(Facts) | FIRST(Fact) | FIRST(Questi on)
(€ ! ?

The second pass is more interesting: this time, we know that Fact s derives €, and
therefore, therule Sessi on -> Facts Questi on results in adding the symbols from
FIRST(Quest i on) to FIRST(Sessi on). TheruleFacts -> Fact Facts resultsin
adding! to FIRST(Fact s). So we get:

FIRST(Sessi on) | FIRST(Facts) | FIRST(Fact) | FIRST(Questi on)
(2 el ! ?

In the third pass, the only change is the addition of ! to FIRST(Sessi on), becauseit is
now a member of FIRST(Fact s). So we have:

FIRST(Session) | FIRST(Facts) | FIRST(Fact) | FIRST(Questi on)
(?! el ! ?

The fourth pass does not result in any new additions.

172 Deter ministic top-down methods [Ch.8

The question remains how to decide when an € right-hand side or, for that matter,
a right-hand side that derives € is to be predicted. Suppose that we have a grammar
rule

A - aglag|---|ay

and also suppose that o, is or derives €. Now suppose we find A at the front of a pred-
iction, asin

a - #
At

where we again have added the # end-marker. A breadth-first parser would have to
investigate the following predictions:

G]_X#

O #
None of these predictions derive €, because of the end-marker (#). We know how to
compute the FIRST sets of these predictions. If the next input symbol is not a member
of any of these FIRST sets, either the prediction we started with (Ax#) is wrong, or
there is an error in the input sentence. Otherwise, the next input symbol is a member of
one or more of these FIRST sets, and we can strike out the predictions that do not have
the symbol in their FIRST set. If none of these FIRST sets have a symbol in common
with any of the other FIRST sets, the next input symbol can only be a member of at
most one of these FIRST sets, so a most one prediction remains, and the parser is
deterministic at this point.

A context-free grammar is called LL(1) if this is always the case. In other words,
a grammar is LL(2) if for any prediction Ax#, with A a non-terminal with right-hand
sidesaq, ..., and a,, the sets FIRST(ax#), ..., and FIRST (a,x#) are pairwise digoint
(no symbol is a member of more than one set). This definition does not conflict with
the one that we gave in the previous section for grammars without €-rules, because in
this case FIRST (ax#) is equal to FIRST(q;), so in this case the sets FIRST(a4), ..., and
FIRST(a,,) are pairwise digoint.

8.2.2.2 Theneed for FOLLOW sets

So, what do we have now? We can construct a deterministic parser for any LL(1)
grammar. This parser operates by starting with the prediction S#, and its prediction
steps consist of replacing the non-terminal at hand with each of its right-hand sides,
computing the FIRST sets of the resulting predictions, and checking whether the next
input symbol is a member of any of these sets. We then continue with the predictions
for which thisisthe case. If there is more than one, the parser announces that the gram-
mar is not LL(1) and stops. Although this is a deterministic parser, it is not very effi-
cient, because it has to compute several FIRST sets at each prediction step. We cannot
compute al these FIRST sets before starting the parser, because such a FIRST set

Sec. 8.2] LL(1) grammars 173

depends on the whole prediction (of which there are infinitely many), not just on the

non-terminal. So, we still do not know if, and if so, how we can construct a parse table

for an LL(1) grammar with g-rules, nor do we have a method to determine if a gram-
mar isLL(1).

Now suppose we have a prediction Ax# and arule A-a, and a is or derives €.
The input symbols that lead to the selection of A-a are the symbols in the set
FIRST(ax#), and this set of symbols is formed by the symbols in FIRST(a), extended
with the symbols in FIRST(x#) (because of the transparency of a). The selection of
A - a on an input symbol that is not a member of FIRST(q) is called an e-move. The
set FIRST(x#) is the problem: we cannot compute it at parser generation time. What
we can calculate, though, is the union of all FIRST(x#) sets such that x# can follow A
in any prediction. Thisis just the set of all terminal symbols that can follow A in any
sentential form derivable from S# (not just the present prediction) and is called, quite
reasonably, the FOLLOW set of A, FOLLOW(A).

Now it would seem that such a gross approximation would seriously weaken the
parser or even make it incorrect. Thisis not so. Suppose that this set contains a symbol
a that is not a member of FIRST(x#), and a is the next input symbol. If a is not a
member of FIRST(A), we will predict A - a, and we will ultimately end up with afail-
ing match, because ax# does not derive a string starting with an a. So, the input string
will (correctly) be rejected, athough the error will be detected a bit later than before,
because the parser will make some e-moves before finding out that something is wrong.
If aisamember of FIRST(A) then we may have a problem if a is a member of one of
the FIRST sets of the other right-hand sides of A. We will worry about this a bit later.

The good thing about the FOLLOW set is that we can compute it at parser genera-
tion time. Each non-terminal has a FOLLOW set, and they can be computed as follows:
o as with the computation of the FIRST sets, we start with the FOLLOW sets all

empty.

o Next we process al right-hand sides, including the S# one. Whenever aright-hand
side contains a non-terminal, asin A - - - - By, we add all symbols from FIRST(y)
to FOLLOW(B); these symbols can follow aB. In addition, if y derives €, we add
al symbols from FOLLOW(A) to FOLLOW(B).

o The previous step is repeated until no more new symbols can be added to any of
the FOLLOW sets.

Now let us go back to our example and compute the FOLLOW sets. Starting with
Session #, # is added to FOLLOW(Session). Next, the symbols of
FIRST(Quest i on) are added to FOLLOW(Fact s), because of the rule Sessi on ->
Facts Question. This rule aso results in adding al symbols of
FOLLOW(Sessi on) to FOLLOW(Question). The rule Session -> (Session
) Sessi on results in adding the) symbol to FOLLOW(Sessi on) and the addition of
all symbols of FOLLOW(Sessi on) to FOLLOW(Sessi on), which does not add
much. The next rule is the rule Facts -> Fact Facts. All symbols from
FIRST(Facts) ae added to FOLLOW(Fact), and al symbols from
FOLLOW(Fact s) are added to FOLLOW(Fact s). The other rules do not result in
any additions. So, after the first pass we have:

FOLLOW(Session) | FOLLOW(Facts) | FOLLOW(Fact) | FOLLOW(Questi on)
) # ? ! #

174 Deter ministic top-down methods [Ch.8

In the second pass,) is added to FOLLOW(Quest i on), because it is now a member of
FOLLOW(Sessi on), and al members of FOLLOW(Sessi on) become a member of
FOLLOW(Questi on) because of the rule Session -> Facts Question. No
other changes take place. The resulting FOLLOW sets are presented below:

FOLLOW(Session) | FOLLOW(Facts) | FOLLOW(Fact) | FOLLOW(Questi on)
) # ? ! #)

8.2.2.3 Using the FOLLOW sets to produce a parse table

Once we know the FOLLOW set for each non-terminal that derives €, we can once
again construct a parse table: first, we compute the FIRST set of each non-terminal.
This aso tells us which non-terminals derive €. Next, we compute the FOLLOW set of
each non-terminal. Then, starting with an empty parse table, we process each grammar
rule A-a as follows. we add a to the (A,a) entry of the parse table for all terminal
symbols a in FIRST(a), as we did before. This time however, we also add a to the
(A,a) entry of the parse table for al terminal symbols a in FOLLOW(A) when a is or
derives € (when FIRST(a) contains €). A shorter way of saying thisisthat we add a to
the (A,a) entry of the parse table for all terminal symbols ain FIRST(a FOLLOW(A)).
This last set consists of the union of the FIRST sets of the sentential forms ab for all
symbols b in FOLLOW(A).

Now let us produce a parse table for our example. The Session -> Facts
Quest i on rule does not derive €, because Quest i on does not. Therefore, only the ter-
minal symbols in FIRST(Fact s Questi on) lead to addition of this rule to the table.
These symbols are ! and ? (because Fact s also derives €). Similarly, al other rules
are added, resulting in the parse table presented in Figure 8.10.

() | # ! ? STRI NG
Sessi on (Session) Session Facts Question | Facts Question
Fact s Fact Facts €
Fact I STRING
Question ? STRING

Figure 8.10 The parse table for the grammar of Figure 8.9

8.2.3 LL(1) versusstrong-LL (1)

If all entries of the resulting parse table have at most one element, the parser is again
deterministic. In this case, the grammar is called strong-LL(1) and the parser is called
a strong-LL (1) parser. In the literature, strong-LL(1) is referred to as “strong LL(1)”
(note that there is a space between the words “strong” and “LL"). However, we find
this term a bit misleading because it suggests that the class of strong-LL(1) grammars
is more powerful than the class of LL(1) grammars, but this is not the case. Every
strong-LL (1) grammar isLL(1).

It is perhaps more surprising that every LL(1) grammar is strong-LL(1). In other
words, every grammar that is not strong-LL(1) is not LL(1), and this is demonstrated
with the following argument: if a grammar is not strong-LL (1), there is a parse table
entry, say (A,a), with at least two elements, say a and 3. This means that a is a
member of both FIRST(a FOLLOW(A)) and FIRST(FOLLOW(A)). Now, there are
three possibilities:

Sec. 8.2] LL(1) grammars 175

o aisamember of both FIRST(a) and FIRST(B). In this case, the grammar cannot
be LL(1), because for any prediction Ax#, a is a member of both FIRST(ax#) and
FIRST(Bx#).

o aisamember of either FIRST(a) or FIRST([3), but not both. Let ussay that aisa
member of FIRST(a). In this case, a still isamember of FIRST(3 FOLLOW(A))
so there is a prediction Ax#, such that a is a member of FIRST([3x#). However, a
is also amember of FIRST (ax#), so the grammar isnot LL(1). In other words, in
this case there is a prediction in which an LL(1) parser cannot decide which
right-hand side to choose either.

o aisneither a member of FIRST(a), nor a member of FIRST((). In this case a
and 3 must derive € and a must be a member of FOLLOW(A). This means that
there is a prediction Ax# such that a is a member of FIRST(x#) and thus a is a
member of both FIRST (ax#) and FIRST(3x#), so the grammar isnot LL(1). This
means that in an LL(1) grammar at most one right-hand side of any non-terminal
derivese.

8.24 Full LL(2) parsing

We already mentioned briefly that an important difference between LL(1) parsing and
strong-LL (1) parsing is that the strong-LL (1) parser sometimes makes e-moves before
detecting an error. Consider for instance the following grammar:

-> aAb]| bAa
A -> ¢S] ¢

The strong-L L (1) parse table of this grammar is.

a b c #
S| aAb | bAa
Al € € c S

Now, on input sentence aacabb, the strong-LL (1) parser makes the following moves:

aacabb# aacabb# a|acabb#
— — —
SH Sﬁ aAb# Sﬁa Ab#
a|acabb#
S,aA, b#

The problem here is that the prediction is destroyed by the time the error is detected. In
contrast, an LL(1) parser would not do the last step, because neither FIRST(b#), nor
FIRST(cSb#) contain a, so the LL(1) parser would detect the error before choosing a
right-hand side for A. A full LL(1) parser has the immediate error detection property,
which means that an error is detected as soon as the erroneous symbol is first exam-
ined, whereas a strong-LL (1) parser only has the correct-prefix property, which means
that the parser detects an error as soon as an attempt is made to match (or shift) the
erroneous symbol. In Chapter 10, we will see that the immediate error detection

176 Deter ministic top-down methods [Ch.8

property will help improve error recovery.

Given a prediction A ---#, a full LL(1) parser bases its parsing decisions on
FIRST(A - - - #) rather than on the approximation FIRST(A FOLLOW(A)); this avoids
any parsing decisions on erroneous input symbols (which can never occur in
FIRST(A - - - #) but may occur in FIRST(A FOLLOW(A))). So, if we have prediction
A---# and input symbol a, we first have to determine if a is a member of
FIRST(A - - - #), before consulting the parse table to choose a right-hand side for A.
The penalty for thisis in efficiency: every time that parse table has to be consulted, a
FIRST set has to be computed and a check made that the input symbol is a member.

Fortunately, we can do better than this. A first step to improvement is the follow-
ing: suppose that we maintain between all symbols in the prediction a set of terminal
symbols that are correct at this point, like this:

X Y z # |
A O O O
Here, O isthe set of symbolsthat are legal at this point; thisis just the FIRST set of the
remaining part of the prediction: FIRST(#); likewise, 00 is FIRST(Z#), O is
FIRST(YZ#), and U is FIRST(XYZ#) (none of these sets contain €). These sets can
easily be computed, from right to left. For instance, [0 consists of the symbols in
FIRST(Y), with the symbols from [0 added if Y derives € (if € is a member of
FIRST(Y)). When a non-terminal is replaced by one of its right-hand sides, the set
behind this right-hand side is available, and we can use this to compute the sets within

this right-hand side and in front of it.
Now let us see how this works for our example. As the reader can easily verify,

FIRST(S) ={ a, b}, and
FIRST(A) ={ c, €}.

The parser starts with the prediction S#. We have to find a starting point for the sets: it
makes sense to start with an empty one to the right of the #, because no symbols are
correct after the#. So, the parser starts in the following state:

aacabb#

S #
ab #

The first input symbol is a member of the current FIRST set, soit is correct. The (S, a)
entry of the parse table contains aAb so we get parser state

aacabb#
S a A b #
/%? ? ? #

Computing the sets marked with a question mark from right to left results in the

Sec. 8.2] LL(1) grammars 177

following parser state:

aacabb#

S a A b #
/¥; b,c b #

Note that b now is a member of the set in front of A, but a is not, although it is a
member of FOLLOW(A). After the match step, the parser isin the following state:

a|acabb#
S, A b #
;Zp b #

The next input symbol is not a member of the current FIRST set, so an error is
detected, and no right-hand side of A is chosen. Instead, the prediction is left intact, so
error recovery can profit from it.

It is not clear that all this is more efficient than computing the FIRST set of a
prediction to determine the correctness of an input symbol before choosing a right-hand
side. However, it does suggest that we can do this at parser generation time, by com-
bining non-terminals with the FIRST sets that can follow it in a prediction. For our
example, we always start with non-terminal S and the set {#}. We will indicate this
with the pair [S,{#}]. Starting with this pair, we will try to make rules for the behaviour
of each pair that turns up, for each valid look-ahead. We know from the FIRST sets of
the aternatives for S that on look-ahead symbol a, [S{#}] results in right-hand side
aAb. Now the only symbol that can follow A hereisab. So in fact, we have:

on look-ahead symbol a, [S{#}] resultsin right-hand sidea [A{b}] b.
Similarly we find:

on look-ahead symbol b, [S{#}] resultsinright-hand sideb [A{a}] a.
We have now obtained pairs for Afollowed by ab, and Afollowed by an a. So we have
to make rules for them: We know that on look-ahead symbol c, [A{b}] results in
right-hand side ¢S. Because A can only be followed by ab in this context, the same
holds for this S. This gives:

on look-ahead symbol ¢, [A{b}] resultsin right-hand side c [S{b}].
Likewise, we get the following rules:

on look-ahead symbol b, [A{b}] results in right-hand side ¢;

on look-ahead symbol ¢, [A{a}] resultsin right-hand sidec [S{a}];

on look-ahead symbol a, [A{a}] resultsin right-hand side €.

Now we have to make rules for the pairs S followed by an a, and S followed by ab:

178 Deter ministic top-down methods [Ch.8

on look-ahead symbol a, [S{a}] resultsin right-hand side a [A{b}] b;
on look-ahead symbol b, [S{a}] resultsinright-hand sideb [A{a}] a;
on look-ahead symbol a, [S{b}] resultsin right-hand sidea [A{b}] b;
on look-ahead symbol b, [S{b}] resultsin right-hand sideb [A{a}] a.

In fact, we find that we have rewritten the grammar, using the [non-terminal,
followed-by set] pairs as non-terminals, into the following form:

[S{#}] -> a[A{b}]b|b[A{a}]a
[S{a}] -> al[A{b}]b|b[A{a}]a
[S{b}] -> a[A{b}]b|b[A{a}]a
[A{a}] -> c[S{a}]]|e
[A{b}] -> c[S{b}]|e

For this grammar, the following parse table can be produced:

a b c #
[S{#}] | a[A{b}]b | b[A{a}]a
[S{a}] | a[A{b}]b | b[A{a}]a
[S{b}] | a[A{b}]b | b[A{a}]a
[A{a}] | € c [S{a}]
[A{b}] € c [S{b}]

The entries for the different [S,...] rules are identical so we can merge them. After
that, the only change with respect to the original parse table is the duplication of the A-
rule: now there is one copy for each context in which A has a different set behind it in a
prediction.

Now, after accepting the first a of aacabb, the prediction is [A{b}]b#; since the
parse table entry ([A{b}], a) is empty, parsing will stop here and now.

The resulting parser is exactly the same as the strong-LL (1) one. Only the parse
table is different. Often, the LL(1) table is much larger than the strong-LL (1) one. As
the benefit of having an LL(1) parser only liesin that it detects some errors a bit earlier,
this usually is not considered worth the extra cost, and thus most parsers that are adver-
tised as LL (1) parsers are actually strong-LL (1) parsers.

8.25 Solving LL (1) conflicts

If a parse table entry has more than one element, we have what we call an LL(1) con-
flict. In this section, we will discuss how to deal with them. One way to deal with con-
flicts is one that we have seen before: use a depth-first or a breadth-first parser with a
one symbol look-ahead. This, however, has several disadvantages. the resulting parser
IS not deterministic any more, it isless efficient (often to such an extent that it becomes
unacceptable), and it still does not work for left-recursive grammars. Therefore, we
have to try and eliminate these conflicts, so we can use an ordinary LL(1) parser.

8.25.1 Eliminating left-recursion

The first step to take is the elimination of left-recursion. Left-recursive grammars
aways lead to LL(1) conflicts, because the right-hand side causing the left-recursion
has a FIRST set that contains all symbols from the FIRST set of the non-terminal.

Sec. 8.2] LL(1) grammars 179

Therefore, it also contains all terminal symbols of the FIRST sets of the other right-
hand sides of the non-terminal. Eliminating left-recursion has aready been discussed
in Section 6.4.

8.25.2 Left-factoring
Another technique for removing LL(1) conflicts is left-factoring. Left-factoring of
grammar rulesis like factoring arithmetic expressions:

a*b+a*c=a* (b+c).
The grammatical equivalent to thisisarule
A-xy|xz

which clearly has an LL(1) conflict on the terminal symbolsin FIRST(x). We replace
this grammar rule with the two rules

A - XN
N-oylz

where N is a new non-terminal. There have been some attempts to automate this pro-
cess; see Foster [Transform 1968] and Rosenkrantz and Hunt [Transform 1987].

8.2.5.3 Conflict resolvers

Sometimes, these techniques do not help much. We could for instance dea with a
language for which no LL (1) grammar exists. In fact, many languages can be described
by a context-free grammar, but not by an LL (1) grammar. Another method of handling
conflicts is to resolve them by so-called disambiguating rules. An example of such a
disambiguating rule is: “on a conflict, the textually first one of the conflicting right-
hand sides is chosen”. With this disambiguating rule, the order of the right-hand sides
within a grammar rule becomes crucial, and unexpected results may occur if the
grammar-processing program does not clearly indicate where conflicts occur and how
they are resolved.

A better method is to have the grammar writer specify explicitly how each con-
flict must be resolved, using so-called conflict resolvers. One option is to resolve con-
flicts at parser generation time. Parser generators that allow for this kind of conflict
resolver usually have a mechanism that enables the user to indicate (at parser genera-
tion time) which right-hand side must be chosen on a conflict. Another, much more
flexible method is to have conflicts resolved at parse time. When the parser meets a
conflict, it calls a user-specified conflict resolver. Such a user-specified conflict
resolver has the complete left-context at its disposal, so it could base its choice on this
left-context. It is also possible to have the parser look further ahead in the input, and
then resolve the conflict based on the symbols found. See Milton, Kirchhoff and Row-
land [LL 1979] and Grune and Jacobs [LL 1988], for similar approaches using attribute
grammars.

180 Deter ministic top-down methods [Ch.8

8.2.6 LL(1) and recursive descent

Most hand-written parsers are LL(1) parsers. They usualy are written in the form of a
non-backtracking recursive-descent parser (see Section 6.6). In fact, thisisavery sim-
ple way to implement a strong-LL (1) parser. For anon-terminal A with grammar rule

Asag] - |a,
the parsing routine has the following structure:

procedure A;
if lookahead [0 FIRST(a; FOLLOW(A)) then
codefor aj ...
else if lookahead [1 FIRST(a, FOLLOW(A)) then
codefor a, ...

elseif lookahead [FIRST(a,, FOLLOW(A)) then
code for ay, ...
else ERROR;
end A;

The look-ahead symbol aways resides in avariable called “lookahead”. The procedure
ERROR announces an error and stops the parser.

The code for a right-hand side consists of the code for the symbols of the right-
hand side. A non-terminal symbol results in a call to the parsing routine for this non-
terminal, and aterminal symbol resultsin acall to a MATCH routine with this symbol
as parameter. This MATCH routine has the following structure:

procedure MATCH(sym);
if lookahead = sym then
lookahead := NEXTSYM
else ERROR;
end MATCH,;

The NEXTSYM procedure reads the next symbol from the input.

Several LL(1) parser generators produce a recursive descent parser instead of a
parse table that is to be interpreted by a grammar-independent parser. The advantages
of generating arecursive descent parser are nuUMerous:

o Semantic actions are easily embedded in the parsing routines.

o A parameter mechanism or attribute mechanism comes virtually for free: the
parser generator can use the parameter mechanism of the implementation
language.

o Non-backtracking recursive descent parsers are quite efficient, often more effi-
cient than the table-driven ones.

o Dynamic conflict resolvers are implemented easily.

The most important disadvantage of generating a recursive descent parser is the
size of the parser. A recursive descent parser is usually larger than a table-driven one
(including the table). However, this becomes less of a problem as computer memories

Sec. 8.2] LL(1) grammars 181

get bigger and bigger. See Waite and Carter [Misc 1985] for measurements of table-
driven parsers versus recursive descent parsers.

8.3 LL(K) GRAMMARS

Up until now, we have limited the look-ahead to just one symbol, and one might
wonder if having a look-ahead of k symbols instead of one makes the method more
powerful. It does, so let us define LL(k) grammars. For this, we need a definition of
FIRST, sets: if x is a sentential form, then FIRSTl((x) is the set of terminal strings w
such that |w| (the length of w) is less than k and x 5w, or |w] is equal to k, and x = wy,
for some sentential formy. For k = 1 this definition coincides with the definition of the
FIRST sets as we have seen it before.

We now have the instruments needed to define LL(k): a grammar is LL(K) if for
any prediction Ax#, with A a non-terminal with right-hand sides a4, ..., and a,,, the sets
FIRST (a1x#), are pairwise digoint. Obviously, for any k, the set of LL(K) grammars
is a subset of the set of LL(k+1) grammars, and in fact, for any k there are LL(k+1)
grammars that are not LL (k). A trivial example of thisis given in Figure 8.11.

S. -> akblaka

S

Figure8.11 An LL(k+1) grammar that is not LL(k)

Less obvious is that for any k there are languages that are LL (k+1), but not LL(K). An
example of such alanguageisgivenin Figure 8.12.

S -> aSA | ¢
A -> aka|c

Figure 8.12 A grammar defining an LL(k +1) language that is not LL(k)

See Kurki-Suonio [LL 1969] for more details.

With LL(k) grammars we have the same problem as with the LL(1) grammars:
producing a parse table is difficult. Inthe LL(1) case, we solved this problem with the
aid of the FOLLOW sets, obtaining strong-LL (1) parsers. We can try the same with
LL(K) grammars using FOLLOW, sets. For any non-terminal A, FOLLOW, (A) is now
defined as the union of the sets FIRST, (x## - - - ##), for any prediction AxdH# - - - ## (in
LL (k) parsing, we add k end-markers instead of just one).

Once we have the FIRST, sets and the FOLLOW, sets, we can produce a parse
table for the grammar. Like the LL(1) parse table, this parse table will be indexed with
pairs consisting of a non-terminal and a terminal string of length equal to k. Every
grammar rule A - a is processed as follows: a is added to the (A, w) entry of the table
for every win FIRST, (a FOLLOW,(A)) (as we have seen before, this last set denotes
the union of several FIRST, sets: it is the union of al FIRST, (av) sets with v an ele-
ment of FOLLOW, (A)). All thisis just an extension to k look-ahead symbols of what
we did earlier with one look-ahead symbol.

If this results in a parse table where al entries have at most one element, the
grammar isstrong-LL(k). Unlike the LL(1) case however, for k > 1 there are grammars
that are LL(K), but not strong-LL (k). An example of such a grammar is given in Figure

182 Deter ministic top-down methods [Ch.8

8.13.

-> aAaa | bAba
A -> Db ¢

Figure 8.13 An LL(2) grammar that is not strong-LL(2)

This raises an interesting question, one that has kept the authors busy for quite a
while: how come? Why isit different for k = 1? If we try to repeat our proof from Sec-
tion 8.2.3 for alook-ahead k > 1, we see that we fail at the very last step: let us examine
astrong-LL (k) conflict: suppose that the right-hand sides a and 3 both end up in the (A,
w) entry of the parse table. This means that w is a member of both FIRST (a
FOLLOW, (A)) and FIRST, (B FOLLOW, (A)). Now, there are three cases:

o Wisamember both FIRST, (o) and FIRST (B). In this case, the grammar cannot
be LL(K), because for any prediction Ax## ---##, w is a member of both
FIRST (o - - - ##) and FIRST | (Bxtt - - - ##).

o Wisamember of either FIRST (a) or FIRST, (), but not both. Let us say that w
is @ member of FIRST (a). In this case, w still is a member of FIRST, (B
FOLLOW,(A)) so there is a prediction AxtH# - - - ##, such that w is a member of
FIRST (Bx## - - - ##). However, w is also amember of FIRST (cd#H# - - - ##), so
the grammar is not LL(K). In other words, in this case there is a prediction in
which an LL(K) parser cannot decide which right-hand side to choose either.

o Wisneither amember of FIRST,(a) nor a member of FIRST (B). Here, we have
to deviate from the reasoning we used in the LL(1) case. Asw is an element of
FIRST, (a FOLLOW,(A)), w can now be split into two parts wy 3 and wy », such
that wy ; is an element of FIRST, (o) and wy is a non-empty start of an element
of FOLLOW, (A). Likewise, w can be split into two parts w1 and w > such that
Wy is an element of FIRST, (B) and w is a non-empty start of an element of
FOLLOW,(A). So, we have the following situation:

Now, if wyi=wp1, Wy, is @ member of FIRST,(a), as well as FIRST, (B), and

there is a prediction Ax## ---## such that x#t---## 5 wio- . S0,

FIRST (codH# - - - ##) contains w and so does FIRST, (Bxi## - - - #4#), and there-

fore, the grammar is not LL(k). So the only case left Is that wq %W, ;. Neither

W1, NOr Wy, are g, and thisisjust impossible if |w |=1.

Strong-LL (k) parsers with k > 1 are seldom used in practice, because the parse
tables are huge, and there are not many languages that are LL (k) for some k > 1, but not
LL(1). Even thelanguagesthat are LL(K) for some k > 1, but not LL(1), are usually for
the most part LL(1), and can be parsed using an LL (1) parser with conflict resolvers at
the places where the grammar isnot LL(1).

To obtain a full LL(k) parser, the method that we used to obtain a full LL(1)
parser can be extended to deal with pairs [A, L], where L is a FIRST, set of

- - ## - - - ## in some prediction A - - - ## - - - ##. This extension is straightforward
and will not be discussed further.

Sec. 8.3] Extended LL (1) grammars 183

84 EXTENDED LL(1) GRAMMARS

Severa parser generators accept an extended context-free grammar instead of an ordi-
nary one. See for instance Lewi et a.[LL 1978], Heckmann [LL 1986], Grune and
Jacobg[LL 1988]. Extended context-free grammars have been discussed in Chapter 2.
To check that an extended context-free grammar is LL(1), we have to transform the
extended context-free grammar into an ordinary one, in away that will avoid introduc-
ing LL(1) conflicts. For instance, the transformation for Sonet hi ng™ given in Chapter
2:

Sonet hi ng* - > Sonet hi ng | Sonet hi ng Sorret hi ng*

will not do, because it will result in an LL(1) conflict on the symbols in
FIRST(Sonet hi ng). Instead, we will use the following transformations:

Something” -> &|Sonet hi ng Sonet hi ng’
Sonething® -> Sonet hi ng Sonet hi ng
Sorret hi ng? -> ¢|Somet hi ng

If the resulting grammar is LL(1), the original extended context-free grammar was
ELL(1) (Extended LL(1)). This is the recursive interpretation of Chapter 2. Parser
generation usually proceeds as follows:. first transform the grammar to an ordinary
context-free grammar, and then produce a parse table for it.

Extended LL(1) grammars allow for a more efficient implementation in recursive
descent parsers. In this case, Sorret hi ng? can be implemented as an if statement:

if lookahead [0 FIRST(Sorret hi ng) then
code for Sonet hi ng ...

dse if lookahead O FOLLOW/(Sonet hi ng?) then
ERROR;

Sonet hi ng” can beimplemented as awhile loop:

while lookahead [J FIRST(Sorret hi ng) do
code for Sonet hi ng ...

if lookahead O FOLLOW(Soret hi ng’) then
ERROR;

and Sonet hi ng™ can be implemented as arepeat loop:

repeat
if lookahead [0 FIRST(Sorret hi ng) then
ERROR;
code for Sonet hi ng ...
until lookahead O FOLLOW(Sonet hi ng™);

Here, procedure calls are replaced by much more efficient repetitive constructs.

9

Deterministic bottom-up parsing

There is a great variety of deterministic bottom-up parsing methods. The first deter-
ministic parsers (Wolpe [Precedence 1958], Wegstein [Precedence 1959]) were
bottom-up parsers and interest has only increased since. The annotated bibliography in
this book contains about 140 entries on deterministic bottom-up parsing against some

30 on deterministic top-down parsing. These figures may not reflect the relative

importance of the methods, they are certainly indicative of the fascination and com-

plexity of the subject of this chapter.

There are two families of deterministic bottom-up parsers, those that are purely
bottom-up and those that have an additional top-down component. The first family
comprises the precedence and bounded-context techniques, which are treated in Sec-
tions 9.1 to 9.3; the second family, which is both more powerful and more complicated,
contains the LR techniques and is treated in Sections 9.4 to 9.7. Tomita's parser in
Section 9.8 is not purely deterministic but leans so heavily on the LR techniques that its
treatment in this chapter is warranted. The chapter closes with a short section on non-
canonical bottom-up parsing and one on the use of LR(K) as an ambiguity test.

The proper setting for the subject at hand can best be obtained by summarizing a
number of relevant facts from previous chapters.

o A right-most production expands the right-most non-terminal in a sentential form,
by replacing it by one of its right-hand sides. A sentence is produced by repeated
right-most production until no non-terminal remains. See Figure 9.1 (a), where the
sentential forms are right-aligned to show how the production process creeps to
the left, where it terminates. The grammar used is that of Figure 7.8.

o Each step of abottom-up parser, working on a sentential form, identifies the latest
right-most production in it and undoes it by reducing a segment of the input to the
non-terminal it derived from. The identified segment is called the handle. Since
the parser starts with the final sentential form of the production process (that is,
the input) it finds its first reduction rather to the left end, which is convenient. A
bottom-up parser identifies right-most productions in reverse order. See Figure
9.1(b) where the handles are aligned.

o Toobtain an efficient parser we have to have an efficient method to identify han-
dles, without elaborate searching. The identified handle has to be correct (or the
input isin error); we do not want to consider alternative choices for handles.
Although this chapter is called “Deterministic Bottom-Up Parsing”, it is amost

Ch. 9] Deter ministic bottom-up parsing 185

a- ata
-ata
- ata
ata
+a

+a

mmagmagmﬂ

@ (b)
Figure 9.1 Right-most production (a) and right-most reduction (b)

exclusively concerned with methods for finding handles. Once the handle is found,
parsing is (amost always) trivial. The exceptions will be treated separately.

Unlike top-down parsing, which identifies productions right at their beginning,
that is, before any of its constituents have been identified, bottom-up parsing identifies
a production only at its very end, when al its constituents have already been identified.
A top-down parser alows semantic actions to be performed at the beginning of a pro-
duction and these actions can help in determining the semantics of the constituents. In a
bottom-up parser, semantic actions are only performed during a reduction, which
occurs at the end of a production, and the semantics of the constituents have to be
determined without the benefit of knowing in which production they occur. We see that
the increased power of bottom-up parsing comes at a price: since the decision what
production applies is postponed to the latest possible moment, that decision can be
based upon the fullest possible information, but it also means that the actions that
depend on this decision come very late.

9.1 SIMPLE HANDLE-ISOLATING TECHNIQUES

There is a situation in (more or less) daily life in which the (more or less) average
citizen is called upon to identify a handle. If one sees aformulalike

4+5x6+8
one immediately identifies the handle and evaluates it:
4 +5x6+8

4+ 30 +38

186 Deter ministic bottom-up parsing [Ch.9

and then

If we look closely, we can discern in this process shifts and reduces. The person
doing the arithmetic shifts symbols until he reaches the situation

4+5x6 + 8

in which the control mechanism in his head tells him that this is the right moment to do
a reduce. If asked why, he might answer something like: “Ah, well, | was taught in
school that multiplication comes before addition”. Before we can formalize this notion
and turn it into a parsing method, we consider an even simpler case below (Section
9.1.1).

SS ->

->
->
->
->
->
->

+m
— #*

mTTH4—-mm
~STH4Am%
X
T

E)
Figure 9.2 A grammar for simple arithmetic expressions

Meanwhile we note that formulas like the one above are called “arithmetic expres-
sions’ and are produced by the grammar of Figure 9.2. S is the start symbol, E stands
for “expression”, T for “term”, F for “factor” and n for any number. The last causes no
problems, since the exact value of the number isimmaterial to the parsing process. We
have demarcated the beginning and the end of the expression with # marks; the blank
space that normally surrounds a formula is not good enough for automatic processing.
This aso simplifies the stop criterion: the parser accepts the input as correct and stops
when the terminating # is shifted, or upon the subsequent reduce.

9.1.1 Fully parenthesized expressions

S -> #
-> (

-> T

-> ((TxF)

-> F

-> n

-> (

MM mm

Figure 9.3 A grammar for fully parenthesized arithmetic expressions

Sec. 9.1] Simple handle-isolating techniques 187

An arithmetic expression is fully parenthesized if each operator together with its
operands has parentheses around it. Such expressions are generated by the grammar of
Figure 9.3. Our example expression would have the form

#((4+(5%x6)) +8) #
IR

Now finding the handleistrivia: go to the first closing parenthesis and then back to the
nearest opening parenthesis. The segment between and including the parentheses is the
handle. Reduce it and repeat the process as often as required. Note that after the reduc-
tion there is no need to start all over again, looking for the first closing parenthesis:
there cannot be any closing parenthesis on the left of the reduction spot, so we can start
searching right where we are. In the above example we find the next right parenthesis
immediately and do the next reduction:

#((4+30) +8) #

9.2 PRECEDENCE PARSING

Of course, grammars are not normally kind enough to have begin- and end-markers to
each compound right-hand side, and the above parsing method has little practical value
(as far as we know it does not even have a name). Y et, suppose we had a method for
inserting the proper parentheses into an expression that was lacking them. At a first
glance this seems trivial to do: when we see +nx we know we can replace this by +(nx
and we can replace xn+ by xn) +. There isa dight problem with +n+, but since the first
+ has to be performed first, we replace this by +n) +. The #'s are easy; we can replace
#n by #(n and n# by n) #. For our example we get:

#(4+(5%x6) +8) #

This is, however, not completely correct — it should have been #((4+(5x6)) +8) # —
and for 4+5x6 we get the obviously incorrect form #(4+(5x6) #.

The problem is that we do not know how many parentheses to insert in, for
instance, +nx; in 4+5x6x7 we should replace it by +((nx: #(4+((5x6) x7)) #. We
solve this problem by inserting parentheses generators rather than parentheses. A gen-
erator for open parentheses is traditionally written as <, one for closing parentheses as
>; we shall also use a “non-parenthesis’, =. These symbols look confusingly like <, >
and =, to which they are only remotely related. Now, our tentatively inserted
parentheses become firmly inserted parentheses generators; see Figure 9.4 in which we
have left out the n since its position can be inferred from the pattern. Still, the table in
Figure 9.4 is incomplete: the pattern x X is missing and so are al patterns involving
parentheses. In principle there should be a pattern for each combination of two opera-
tors (where we count the genuine parentheses as operators too), and only the generator
to be inserted is relevant for each combination. This generator is called the precedence
relation between the two operators. It is convenient to collect all combinations of
operators in a table, the precedence table. The precedence table for the grammar of

188 Deter ministic bottom-up parsing [Ch.9

+ X 5 o+ <X
X+ o x>+
++ o+ >+

... - H < ...
A

Figure 9.4 Preliminary table of precedence relations

Figure 9.2 is given in Figure 9.5; the left-most column contains the left-hand symbols
and the top-most row the right-hand symbols.

+ X ()
| =| < | < | <
+ | > | > | < | < | >
X | > | > > < | >
(< | < | < | =
) > | > | > >

Figure 9.5 Operator-precedence table to the grammar of Figure 9.2

There are three remarks to be made about this precedence table. First, we have
added a number of < and > tokens not covered above (for instance, x>x). Second, there
is#=# and (=) (but not)=(!); we shall shortly see what they mean. And third, there
are three empty entries, meaning that when we find these combinations in the input, it
contains an error (and is not produced by the grammar for which we made our pre-
cedence table).

Such atable is called a precedence table because for symbols that are normally
regarded as operators it gives their relative precedence. An entry like +<x indicates that
in the combination +x, the x has a higher precedence than the +. We shall first show
how the precedence table is used in parsing and then how such a precedence table can
be constructed systematically for agiven grammar, if the grammar alowsiit.

The stack in an operator-precedence parser differs from the normal bottom-up
parser stack in that it contains “important” symbols, the operators, between which rela
tions are defined, and “unimportant” symbols, the numbers, which are only consulted to
determine the value of a handle and which do not influence the parsing. Moreover, we
need places on the stack to insert the parentheses generators (one can, in principle, do
without these, by reevaluating them whenever necessary). Since there is a parentheses
generator between each pair of operators and there is aso (almost) aways a value
between such a pair, we shall indicate both in the same position on the stack, with the
parentheses generator in line and the value below it; see Figure 9.6.

To show that, contrary to what is sometimes thought, operator-precedence can do
more than just calculate a value (and since we have seen too often now that
4+5x6+8=42), we shall have the parser construct the parse tree rather than the value.
The stack starts with a #. Values and operators are shifted onto it, interspersed with
parentheses generators, until a > generator is met; the following operator is not shifted
and is left in the input (Figure 9.6(b)). It is now easy to identify the handle, which is

Sec. 9.2] Precedence parsing 189

Stack rest of input

(@ # 4 +5x%x6+8#

(b) #<+;<x>; + 8 #

() #H.< + > + 8 #

(d) # < + > #

(e # = #
AN
/ N\
4 X
/ N\
5 6

8

Figure 9.6 Operator-precedence parsing of 4+5x6+8

demarcated by a dotted rectangle in the figure and which is reduced to atree; see (c), in
which aso the next > has already appeared between the + on the stack and the + in the
input. Note that the tree and the new generator have come in the position of the < of the
handle. A further reduction brings us to (d) in which the + and the 8 have already been
shifted, and then to the final state of the operator-precedence parser, in which the stack
holds #=# and the parse tree dangles from the value position.

We see that the stack only holds < markers and values, plus a > on the top each
time a handle is found. The meaning of the = becomes clear when we parse an input
text which includes parentheses, like 4%(5+6) ; see Figure 9.7, in which we have the
parser calculate the value rather than the parse tree. We see that the = is used to allow
handles consisting of more than one operator and two operands; the handle in (c) has
two operators, the (and the) and one operand, the 11. Note that as aready indicated
in Section 5.1.1, the set of stack configurations can be described by a regular expres-
sion; for this type of parsers the expression is:

| #<q ([<Ha)” »° | #=H

where q is any operator; the first aternative is the start situation and the third alterna-
tive is the end situation.

190 Deter ministic bottom-up parsing [Ch.9

Stack rest of input
(@ # 4 x(5+6) #
(b) # < x < (1< + >) #
4 'S8
© R G S 4
4 SURPRONY 11
@ BUETRT 4
4 11:
(e) # = #
44

Figure 9.7 An operator-precedence parsing involving =

9.2.1 Constructing the operator-precedencetable

The above hinges on the difference between operators, which are terminal symbols and

between which precedence relations are defined, and operands, which are non-

terminals. This distinction is captured in the following definition of an operator gram-
mar:

o A CF grammar is an operator grammar if (and only if) each right-hand side con-
tains at least one terminal or non-terminal and no right-hand side contains two
consecutive non-terminals.

So each pair of non-terminals is separated by at least one terminal; al the terminals

except those carrying values (n in our case) are called operators.

For such grammars, setting up the precedence table is relatively easy. First we cal-
culate for each non-terminal A the set FIRST 5(A), which is the set of all operators that
can occur as the first operator in any sentential form deriving from A, and LAST (A),
which is defined similarly. Note that this first operator in a sentential form can be pre-
ceded by at most one non-terminal in an operator grammar. The FIRST ;'s of all
non-terminals are constructed simultaneously as follows:

1. For each non-terminal A, find all right-hand sides of al rules for A; now for each
right-hand side R we insert the first terminal in R (if any) into FIRST j(A). This
givesustheinitial values of al FIRST y's

2. For each non-terminal A, find all right-hand sides of al rules for A; now for each
right-hand side R that starts with a non-terminal, say B, we add the elements of
FIRST 5p(B) to FIRST 5(A). This is reasonable, since a sentential form of A may
start with B, so all terminals in FIRST ,(B) should also be in FIRST 5(A).

3. Repeat step 2 above until no FIRST , changes any more.

We have now found the FIRST ,, of all non-terminals. A similar algorithm, using the

last terminal in Rin step 1 and a B which ends A in step 2 provides the LAST ;'s. The

sets for the grammar of Figure 9.2 are shown in Figure 9.8.

Now we can fill the precedence table using the following rules, in which g, g4 and
g, are operators and A is anon-terminal.

o For each occurrence in aright-hand side of the form q,q, or q1Aq», Set q1=05.

Sec. 9.2 Precedence parsing 191

FIRST o(S) = {#} LAST o(S) = {#}
FIRST 5o(B) ={+, , (} LAST 5p(B) ={+, x,) }
FIRST 5o(T) ={x, (} LAST 5p(T) ={x,) }
FIRST op(F) ={(} LAST op(F) ={) }

Figure 9.8 FIRST 5, and LAST -, sets for the grammar of Figure 9.2

This keeps operators from the same handle together.

o For each occurrence g A, set q;<q; for each q; in FIRST (A). This demarcates
the left end of ahandle.

o For each occurrence Aqy, set q2>q; for each g, in LAST o5(A). This demarcates
the right end of ahandle.

If we obtain a table without conflicts this way, that is, if we never find two dif-
ferent relations between two operators, then we call the grammar operator-precedence.
It will now be clear why (=) and not) =(, and why +>+ (because E+ occurs in E- >SE+T
and +isin LAST (E)).

In this way, the table can be derived from the grammar by a program and be
passed on to the operator-precedence parser. A very efficient linear-time parser results.
There is, however, one small problem we have glossed over: Although the method
properly identifies the handle, it often does not identify the non-terminal to which to
reduce it. Also, it does not show any unit rule reductions; nowhere in the examples did
we see reductions of the form E->F or T- >F. In short, operator-precedence parsing
generates only skeleton parse trees.

Operator-precedence parsers are very easy to construct (often even by hand) and
very efficient to use; operator-precedence is the method of choice for all parsing prob-
lems that are simple enough to alow it. That only a skeleton parse tree is obtained, is
often not an obstacle, since operator grammars often have the property that the seman-
tics is attached to the operators rather than to the right-hand sides; the operators are
identified correctly.

It is surprising how many grammars are (almost) operator-precedence. Almost all
formula-like computer input is operator-precedence. Also, large parts of the grammars
of many computer languages are operator-precedence. An example is a construction
like CONST total = head + tail; from a Pascal-like language, which is easily
rendered as:

Stack rest of input
< QONST < = < + > ;
total head tail

Ignoring the non-terminals has other bad consequences besides producing a skele-
ton parse tree. Since non-terminals are ignored, a missing non-terminal is not noticed.
As aresult, the parser will accept incorrect input without warning and will produce an
incomplete parse tree for it. A parser using the table of Figure 9.5 will blithely accept
the empty string, since it immediately leads to the stack configuration #=#. It produces
aparse tree consisting of one empty node.

The theoretical analysis of this phenomenon turns out to be inordinately difficult;
see Levy [Precedence 1975], Williams [Precedence 1977, 1979, 1981] and many others

192 Deter ministic bottom-up parsing [Ch.9

in Section 13.8. In practice it is less of a problem than one would expect; it is easy to
check for the presence of required non-terminals, either while the parse tree is being
constructed or afterwards.

9.2.2 Precedence functions

Several objections can be raised against operator-precedence. First, it cannot handle all
grammars that can be handled by other more sophisticated methods. Second, its error
detection capabilities are weak. Third, it constructs skeleton parse trees only. And
fourth, the two-dimensional precedence table, which for say a 100 tokens has 10000
entries, may take too much room. The latter objection can be overcome for those pre-
cedence tables that can be represented by so-called precedence functions. The ideais
the following. Rather than having a table T such that for any two operators g, and g,
T[q1,92] yields the relation between q; and g,, we have two integer functions f and g
such that fy,<gq, means that q;<q», fy,=gq, Mmeans qi;=q, and f4,>g,, Means
d1>qz. fqiscadled theleft priority of g, gy the right priority; they would probably be
better indicated by | and r, but the use of f and g is traditional. Note that we write fg,
rather than f(q); this allows usto write, for instance, f for the left priority of (rather
than the confusing f((). It will be clear that two functions are required: with just one
function one cannot express, for instance, +>+. Precedence functions take much less
room than precedence tables. For our 100 tokens we need 200 function values rather
than 10000 tables entries. Not all tables allow a representation with precedence func-
tions, but many do.

Finding the proper f and g for a given table seems simple enough and can indeed
often be done by hand. The fact, however, that there are two functions rather than one,
the size of the tables and the occurrence of the = complicate things. A well-known
algorithm to construct the functions was given by Bell [Precedence 1969] of which
severa variants exist. The following technique is a straightforward and easily imple-
mented variant of Bell’s algorithm.

First we turn the precedence table into a list of numerical relations, as follows:

o foreachqi<q, wehave fy, <gy,,

o foreachqi=q, we have fy, =g, ,

o foreachqi>q, wehave fy, >gy,,

Here we no longer view forms like fy as function values but rather as variables; rein-

terpretation as function values will occur later. Making such alist is easier done by

computer than by hand; see Figure 9.9(a). Next we remove all equals-relations, as fol-

lows:

o for each relation fy =gy, we create a new variable fy, gq, and replace al
occurrences of fq, and gq, by fq, 9q,-

Note that fy, gq, is not the product of fy, and gq, but rather a new variable, i.e., the

name of a new priority vaue. Now a relation like fy, =gy, has turned into

fq,9q,=fq,9q, and can be deleted trivially. See (b).

Third we flip all > relations:

o Wwe replace each relation p;>p, by p,<p;, where p; and p, are priority vari-

ables. See (c).

The list has now assumed a very uniform appearance and we can start to assign numeri-
cal values to the variables. We shall do this by handing out the numbers 0,1, - - - asfol-
lows:

Ox =3
fy =

(h)

f404 < 94
404 < Ox
f404 < 9
fr > f404
fi >0
fi <0«
fo< 9¢
fe > 19
fx > 404
fx>04
fx > 0gx
fye < g(
fx>1.9
f(9)<9.
f(9) < 9x
f(9) < 9¢
fy > fu0s
f) >0+
f) > Ox

(b)

Figure 9.9 Calculating precedence functions

Precedence parsing

f40% < 0+
f494 < Ox
f404 < g
fags < T
g+ < f,
fi <0x
fy < 9¢
f9<f.
faQu < fx
g+ < fy
Ox < fx
fy < g(
f9) < fx
f(9) <9+
f(9) < 9x
f(9) <9
fugu < f)
g+ < f)
Ox < f)

(©)

202 =0
f(g) =0

g+ < f,
f+<gx
f+<g(
g+ < fx
Ox < fx
fx<g(
g+ < fy
gx<f)

(d)

fy04=0
g+=1

fi <0Ox
f+<g(
gx < fx
fx<g(
gx<f)

()

193

fx0% =0
f(g)=0
g+=1
f,=2

Ox < fx
fx<g(

(f)

(9)

o Find al variables that occur only on the left of a relation; since they are clearly

smaller than all the others, they can all be given the value 0.
In our example we find f;gy and f(g), which both get the vaue 0. Since the relations
that have these two variables on their left will be satisfied provided we hand out no
more 0's, we can remove them (see (d)):
o Remove al relations that have the identified variables on their left sides.

194 Deter ministic bottom-up parsing [Ch.9

This removal causes another set of variables to occur on the left of arelation only, to
which we now hand out the value 1. We repeat this process with increasing values until
the list of relations has become empty; see (e) through (h).

o Decompose the compound variables and give each component the numerical value
of the compound variable. This decomposes, for instance, f(gy=0 into f(=0 and
9)=0; see (i).

This leaves without a value those variables that occurred on the right-hand side only in

the comparisons under (c):

o Toal still unassigned priority values, assign the lowest value that has not yet been
handed out.

fy and g both get the value 5 (see (j) where the values have also been reordered) and

indeed these occur at the high side of a comparison only. It is easily verified that the

priority values found satisfy the initial comparisons as derived from the precedence
table.

It is possible that we reach a stage in which there are still relations left but there
are no variables that occur on the left only. It is easy to see that in that case there must
be acircularity of the form p;<p,<ps ‘- <p; and that no integer functions represent-
ing these relations can exist: the table does not allow precedence functions.

#]) + x | (
| = < | < | <
(= < < <
+ | > | > | > | < | <
x| >| > | > | > | <
) > | > | > | >

Figure 9.10 The precedence table of Figure 9.5 reordered

Note that finding precedence functions is equivalent to reordering the rows and
columns of the precedence table so that the latter can be divided into three regions. a >
region on the lower left, a < region on the upper right and a = border between them.
See Figure 9.10.

There is aways a way to represent a precedence table with more than two func-
tions; see Bertsch [Precedence 1977] on how to construct such functions.

9.2.3 Simple-precedence parsing
The fact that operator-precedence parsing produces skeleton parse trees only is a seri-
ous obstacle to its application outside formula handling. The defect seems easy to
remedy. When a handle is identified in an operator-precedence parser, it is reduced to a
node containing the value(s) and the operator(s), without reference to the grammar. For
serious parsing the matching right-hand side of the pertinent rule has to be found. Now
suppose we require al right-hand sides in the grammar to be different. Then, given a
handle, we can easily find the rule to be used in the reduction (or to find that there is no
matching right-hand side, in which case there was an error in the input).

This is, however, not quite good enough. To properly do the right reductions and
to find reductions of the form A - B (unit reductions), the non-terminals themselves
have to play arole in the identification of the right-hand side. They have to be on the

Sec. 9.2] Precedence parsing 195

stack like any other symbol and precedence relations have to be found for them. This
has the additional advantage that the grammar need no longer be an operator grammar
and that the stack entries have a normal appearance again.

A grammar is simple precedenceif (and only if):

o it has a conflict-free precedence table over al its symbols, terminals and non-
terminals alike,

o honeof itsright-hand sidesise,

o al of itsright-hand sides are different.

The construction of the simple-precedence table is again based upon two sets,
FIRST, | (A) and LAST, | (A). FIRST, , (A) is similar to the set FIRST(A) intro-
duced in Section 8.2.2.1 and differs from it in that it also contains all non-terminals that
can start a sentential form derived from A (whereas FIRST(A) contains terminals only).
LAST ,, | (A) contains al terminals and non-terminals that can end a sentential form of
A. Their construction is similar to that given in Section 8.2.2.1 for the FIRST set. Fig-
ure 9.11 shows the pertinent sets for our grammar.

FIRST, (S ={#} LAST 5 (S) ={#}

FIRST (B ={E,T,F.n,(} LAST, [(B ={T,F.n,)}
FIRST (M ={T.F.n,(} LAST, (M ={F.n,)}
FIRST,, (P ={n, (} LAST, [(F)={n,)}

Figure9.11 FIRST, , and LAST, , for the grammar of Figure 9.2

A simple-precedence table is now constructed as follows. For each two juxta-
posed symbols X and Y in aright-hand side we have:

o X=Y; thiskeeps X and Y together in the handle;

o if Xisanon-terminal: for each symbol sin LAST,,, (X) and each terminal t in
FIRST(Y) (or Y itself if Y is aterminal) we have s>t; this allows X to be reduced
completely when the first sign of Y appears in the input; note that we have
FIRST(Y) here rather than FIRST , | | (Y);

o if Yisanon-terminal: for each symbol sin FIRST | (Y) we have X<s; this pro-
tects X while Y is being recognized.

E T Fin |+ | x| (])
</= < < | < <
E = = =
T | > > | = >
F | > > | > >
n| > > | > >
+ <= | < | < <
X = | < <
(</= < < | < <
) | > > | > >

Figure 9.12 Smple-precedence table to Figure 9.2, with conflicts

196 Deter ministic bottom-up parsing [Ch.9

Simple precedence is not the answer to al our problems asis evident from Figure
9.12 which displays the results of an attempt to construct the precedence table for the
operator-precedence grammar of Figure 9.2. Not even this smple grammar is ssimple-
precedence, witness the conflicts for #</ =E, (</ =E and +</ =T.

->
->
->
->
->
->
->
->
->

m
3

+
_‘l

nma43Imm ™y
~STHAA94mm
X
G

m
~

FIRST, (E)={ET ,T,F.n,(} LAST, (E)={T ,T.F,n,)}
FIRST, (B ={E T ,T,F.n,(} LAST,, [(B)={T,F.,n,)}

FIRSTALL(T’)={T,F,n,(} LASTALL(T’)={F,n,)}
FI RSTALL(T) ={T,F,n,(} LASTALL(T) ={F,n,)}
FIRSTALL(F) ={n, (} LASTALL(F) ={n,)}
| E E | T T|F|n |+ | x| ()
= < < < | < | < <
E =
E > = =
T > > >
T > > | = >
F > > | > >
n > > | > >
+ = < | < | < <
X = < <
(= < < | < | < <
) > > | > >

Figure 9.13 A modified grammar with its simple-precedence table, without conflicts

There are two ways to remedy this. We can adapt the grammar by inserting extra
levels around the troublesome non-terminals. This is done in Figure 9.13 and works in
this case; it brings us, however, farther away from our goal, to produce a correct parse
tree, since we now produce a parse tree for a different grammar. Or we can adapt the
parsing method, as explained in the next section.

9.2.4 Weak-precedence parsing

It turns out that most of the simple-precedence conflicts are </= conflicts. Now the
difference between < and = isin a sense less important than that between either of them
and >. Both < and = result in a shift and only > asks for a reduce. Only when a reduce

Sec. 9.2] Precedence parsing 197

is found will the difference between < and = become significant for finding the head of
the handle. Now suppose we drop the difference between < and = and combine them
into <; then we need a different means of identifying the handle and the proper right-
hand side. This can be done by requiring not only that all right-hand sides be different,
but also that no right-hand side be equal to the tail of another right-hand side. A gram-
mar that conforms to this and has a conflict-free </> precedence table is called weak
precedence. Figure 9.14 gives the (conflict-free) weak-precedence table for the gram-
mar of Figure 9.2. It is of course possible to retain the difference between < and =
where it exists; thiswill improve the error detection capability of the parser.

| E|T|F|n |+ | x| (])
< | < | < | < <
E = = =
T | > > | = >
F| > > | > >
n| > > | > >
+ < | < | < <
X = | < <
(< < < < <
) | > > | > >

Figure 9.14 Weak-precedence table to the grammar of Figure 9.2

The rule that no right-hand side should be equal to the tail of another right-hand
side is more restrictive than is necessary. More lenient rules exist in several variants,
which, however, al require more work in identifying the reduction rule. See, for
instance, Ichbiah and Morse [Precedence 1970] or Sekimoto [Precedence 1972].

Weak precedence is a useful method that applies to a relatively large group of
grammars. Especialy if parsing is used to roughly structure an input stream, as in the
first pass or scan of a complicated system, weak precedence can be of service.

9.2.5 Extended precedence and mixed-strategy precedence

The above methods determine the precedence relations by looking at 1 symbol on the
stack and 1 token in the input. Once this has been said, the idea suggests itself to
replace the 1's by m and n respectively, and to determine the precedence relations from
the topmost m symbols on the stack and the first n tokens in the input. This is called
(m,n)-extended precedence.

We can use the same technique to find the left end of the handle on the stack when
using weak precedence: use k symbols on the left and | on the right to answer the ques-
tion if this is the head of the handle. This is called (k,|)(m,n)-extended [weak] pre-
cedence.

By increasing its parameters, extended precedence can be made reasonably
powerful. Yet the huge tables required (2 x 300 x 300 x 300 = 54 million entries for
(1,2)(2,1) extended precedence with 300 symbols) severely limit its applicability.
Moreover, even with large values of k, |, mand n it isinferior still to LR(1), which we
treat in Section 9.5.

198 Deter ministic bottom-up parsing [Ch.9

If agrammar is (k,I)(m,n)-extended precedence, it is not always necessary to test
the full k, I, mand n symbols. Indeed it is amost never necessary and large parts of the
grammar can amost always be handled by (normal) weak-precedence methods; the full
(k,1)(m,n)-extended precedence power is needed only in a small number of spots in the
grammar. This phenomenon has led to techniques in which the (normal) weak-
precedence table has a (small) number of exception entries that refer to further, more
powerful tables. This technique is called mixed-strategy precedence. Mixed-strategy
precedence has been investigated by McKeeman [Books 1970].

9.2.6 Actually finding the correct right-hand side

All the above methods identify only the bounds of the handle; the actual right-hand side
is still to be determined. It may seem that a search through all right-hand sides is neces-
sary for each reduction, but this is not so. The right-hand sides can be arranged in a
tree structure with their right-most symbols forming the root of the tree, as in Figure
9.15. When we have found a > relation, we start walking down the stack looking for a <
and at the same time we follow the corresponding path through the tree; when we find
the < we should be at the beginning of arule in the tree, or we have found an error in
the input; see Figure 9.15. The tree can be constructed by sorting the grammar rules on
their symbols in backward order and combining equal tails. As an example, the path
followedfor< T = x = F > has been indicated by a dotted line.

S->#E# @é#éEé#

F->(E) (Fl=<(=E=)
F->n @en

T->F| ——= @F/
T->TxF (M=T=x5" /
o

E->E+T @<E<+Z

Figure 9.15 Tree structure for efficiently finding right-hand sides

For several methods to improve upon this, see the literature (Section 13.8).

9.3 BOUNDED-CONTEXT PARSING

There is a different way to solve the annoying problem of the identification of the
right-hand side: let the identity of the rule be part of the precedence relation. A gram-
mar is (m,n) bounded-context (BC(m,n)) if (and only if) for each combination of m
symbols on the stack and n tokens in the input there is a unique parsing decision which
is either “shift” (<) or “reduce using rule X" (>x), as obtained by a variant of the rules
for extended precedence. Figure 9.16 gives the BC(2,1) tables for the grammar of Fig-
ure 9.2. Note that the rows correspond to stack symbol pairs; the entry Accept means
that the input has been parsed and Error means that a syntax error has been found.
Blank entries will never be accessed; all-blank rows have been left out. See, for
instance, Loeckx [Precedence 1970] for the construction of such tables.
Bounded-context (especially BC(2,1)) was once very popular but has been

Sec. 9.3] Bounded-context parsing 199

+ X n ()
#S | Accept
#E | >q o < Error
#T | >0 o7 >e o1 < Error
#E | > op > oF >roF Error
#no| o> > o > on Error Error Error
#(Error Error Error < < Error
E+ | Error Error Error < < Error
B | > S8 JE>B CE>B Error Error >
Tx | Error Error Error < < Error
T PeseT TesmT S E->EHT
e P P T >F
N Pe s F->n F->n Error Error >
+(Error Error Error < < Error
F 1 >rone P1omE P T >TxF
N PE s F->n F->n Error Eiror F->n
x(Error Error Error < < Error
(E | Error < <
(T | Error >E ST < >E ST
(F | Error > oF L SE >T-5F
(n | Error >coon > oon Error Error >
(C I Error Error Error < < Error

Figure 9.16 BC(2,1) tables for the grammar of Figure 9.2

superseded amost completely by LALR(1) (Section 9.6). Recently, interest in
bounded-context grammars has been revived, since it has turned out that such gram-
mars have some excellent error recovery properties; see Section 10.8. Thisis not com-
pletely surprising if we consider that bounded-context grammars have the property that
asmall number of symbols in the sentential form suffice to determine completely what
IS going on.

9.3.1 Floyd productions

Bounded-context parsing steps can be summarized conveniently by using Floyd pro-
ductions. Floyd productions are rules for rewriting a string that contains a marker, A,
on which the rules focus. A Floyd production has the form aAp => yAd and means
that if the marker in the string is preceded by a and is followed by [3, the construction
must be replaced by yAd. The rules are tried in order starting from the top and the first
one to match is applied; processing then resumes on the resulting string, starting from
the top of the list, and the process is repeated until no rule matches.

Although Floyd productions were not primarily designed as a parsing tool but
rather as a general string manipulation language, the identification of the A in the string
with the gap in a bottom-up parser suggests itself and was aready made in Floyd's ori-
ginal article [Misc 1961]. Floyd productions for the grammar of Figure 9.2 are givenin
Figure 9.17. The parser is started with the A at the left of the input.

The apparent convenience and conciseness of Floyd productions makes it very
tempting to write parsers in them by hand, but Floyd productions are very sensitive to
the order in which the rules are listed and a small inaccuracy in the order can have a

200 Deter ministic bottom-up parsing [Ch.9

An = nA
A (= (A
naA = FA
TA* = T A
T™FA = TA
FA = TA
BTA = EA
TA = EA
(B A = FA
A+ = + A
A) =) A
A # = #A
#HEE A => S A

Figure 9.17 Floyd productions for the grammar of Figure 9.2

devastating effect.

94 LRMETHODS

The LR methods are based on the combination of two ideas that have already been
touched upon in previous sections. To reiterate, the problem is to find the handle in a
sentential form as efficiently as possible, for as large a class of grammars as possible.
Such ahandle is searched for from left to right. Now, from Section 5.3.4 we recall that
avery efficient way to find a string in a left-to-right search is by constructing a finite-
state automaton. Just doing this is, however, not good enough. It is quite easy to con-
struct an FS automaton that would recognize any of the right-hand sides in the grammar
efficiently, but it would just find the left-most reducible substring in the sentential
form. This substring is, however, often not the handle.

The idea can be made practical by applying the same trick that was used in
Earley’s parser to drastically reduce the fan-out of the breadth-first search (see Section
7.2): start the automaton with the start rule of the grammar and only consider, in any
position, right-hand sides that could be derived from the start symbol. This top-down
restriction device served in the Earley parser to reduce the cost to O(n3), here we
require the grammar to be such that it reduces the cost to O(n). The resulting automa-
ton is started in itsinitial state at the left end of the sentential form and allowed to run
to the right; it has the property that it stops at the right end of the handle and that its
accepting state tells us how to reduce the handle. How thisis done will be explained in
the next section.

Since practical FS automata easily get so big that their states cannot be displayed
on a single page of a book, we shall use the grammar of Figure 9.18 for our examples.
It isasimplified version of that of Figure 9.2, in which only one binary operator is l€ft,
for which we have chosen the - rather than the +. Although this is not essentiadl, it
serves to remind us that the proper parse tree must be derived, since (a- b) - ¢ is not the
same asa- (b- ¢) (whereas (a+b) +c and a+(b+c) are). The# indicates the end of the
input.

Sec. 9.4] LR methods 201

Sg -> E#
E -> E-T
E -> T

T -> n

T -> (E)
Figure 9.18 A very simple grammar for differences of numbers

9.4.1 LR(0)

We shall now set out to construct a top-down-restricted handle-recognizing FS automa-
ton for the grammar of Figure 9.18, and start by constructing a non-deterministic ver-
sion. Werecall that a non-deterministic automaton can be drawn as a set of states con-
nected by arrows (transitions), each marked with one symbol or with €. Each state will
contain one item. Like in the Earley parser, an item consists of a grammar rule with a
dot « embedded in its right-hand side. Anitem X - --YeZ - -+ in a state means that
the (non-deterministic!) automaton betson X - - - - YZ - - - being the handle and that it
has aready recognized - - -Y. Unlike the Earley parser there are no back-pointers. To
simplify the explanation of the transitions involved, we introduce a second kind of
state, which we call a station. It has only € arrows incoming and outgoing, contains
something of the form «X and is drawn in a rectangle rather than in an ellipse. When
the automaton is in such a station at some point in the sentential form, it thinks that at
this point a handle starts that reduces to X. Consequently each «X station has e-
transitions to items for all rules for X, each with the dot at the left end, since no part of
the rule has yet been recognized; see Figure 9.19. Equally reasonably, each state hold-
ing an item X - ---eZ - -+ has an e-transition to the station «Z, since the bet on an X
may be over-optimistic and the automaton may have to settle for a Z. The third and last
source of arrows in the non-deterministic automaton is straightforward. From each state
containing X ---eP--- there is a P-transition to the state containing
X +--Pe--- for Patermina or a non-terminal. This corresponds to the move the
automaton makes when it really meets a P. Note that the sentential form may contain
non-terminals, so transitions on non-terminals should also be defined.

With this knowledge we refer to Figure 9.19. The stations for S, E and T are
drawn at the top of the picture, to show how they lead to all possible itemsfor S, E and
T, respectively. From each station, €-arrows fan out to all states containing items with
the dot at the left, one for each rule for the non-terminal in that station; from each such
state, non-g-arrows lead down to further states. Now the picture is almost complete. All
that needs to be done is to scan the items for a dot followed by a non-terminal (readily
discernable from the outgoing arrow marked with it) and to connect each such item to
the corresponding station through an e-arrow. This completes the picture.

There are two things to be noted on this picture. First, for each grammar rule with
aright-hand side of length | there are | +1 items and they are easily found in the picture.
Moreover, for a grammar with r different non-terminals, there are r stations. So the
number of states is roughly proportional to the size of the grammar, which assures us
that the automaton will have a modest number of states. For the average grammar of a
hundred rules something like 300 states is usual. The second isthat all states have out-
going arrows except the ones which contain an item with the dot at the right end.
These are accepting states of the automaton and indicate that a handle has been found;
the item in the state tells us how to reduce the handle.

202 Deter ministic bottom-up parsing [Ch.9

Figure 9.19 A non-deterministic handle recognizer for the grammar of Figure 9.18

We shall now run this NDA on the sentential form E- n- n, to see how it works. As
in the FS case we can do so if we are willing to go through the trouble of resolving the
non-determinism on the fly. The automaton starts at the station «S and can immediately
make -moves to S- >eEH#, oE, E- >eE-T, E- >¢T, T, T- >en and T- >«(E) . Moving over
the E reduces the set of states to S- >E«# and E- >E.- T; moving over the next - brings
us at E- >E- «T from which e-moves lead to «T, T- >en and T- >«(E) . Now the move
over n leaves only one item: T- >ne, which tells us through the dot at the end of the
item, that we have found a handle, n, and that we should reduce it to T using T- >n. See
Figure 9.20. This reduction gives us a new sentential form, E- T- n, on which we can
repeat the process.

. E - ‘ n -n

Figure 9.20 The sets of NDA states while analysing E- n-n

Sec. 9.4] LR methods 203

Just asin the FS case, we will soon tire of doing it this way, and the first thing we
need to do is to make the NDA deterministic, if we are to use it in earnest. We use the
subset construction of Section 5.3.1 to construct a deterministic automaton that has sets
of the items of Figure 9.19 as its states. The result is shown in Figure 9.21, where we
have left out the stations to avoid clutter and since they are evident from the other
items. We see that the deterministic automaton looks a lot less understandable than
Figure 9.19; this is the price to be paid for having determinism. Yet we see that the
subset construction has correctly identified the subsets we had already constructed by
hand in the previous paragraph. This type of automaton is called an LR(0) automaton.

Figure 9.21 The corresponding deterministic handle recognizer

It is customary to number the states of the deterministic automaton, as has already
been done in Figure 9.21 (the order of the numbers is arbitrary, they serve identifica-
tion purposes only). Now it has become much easier to represent the sentential form
with its state information, both implementationwise in a computer and in adrawing:

OEQO-OnO - n

The sequence [0 [[0 [J can be read from Figure 9.21 using the path E- n. We start with
state [on the stack and shift in symbols from the sentential form, all the while assess-
ing the new states. As soon as an accepting state shows up on the top of the stack (and
it cannot show up elsewhere on the stack) the shifting stops and a reduce is called for;
the accepting state indicates how to reduce. Accepting state [1 calls for a reduction
T->n, so our new sentential form will be B T- n.

Repeating the handle-finding process on this new form we obtain:

ed-0T0 - n

which shows us two things. First, the automaton has identified a new reduce, E- >E- T,
from state [1, which is correct. The second thing is that by restarting the automaton at

204 Deter ministic bottom-up parsing [Ch.9

the beginning of the sentential form we have done superfluous work: up to state 7, that
is, up to the left end of the handle, nothing has changed. We can save work as follows:
after a reduction of a handle to X, we look at the new exposed state on the stack and
follow the path marked X in the automaton, starting from that state. In our example we
have reduced to T, found a [J exposed on the stack and the automaton leads us from
there to [along the path marked T. This type of shift on a non-terminal that has just
resulted from areduction is called a GOTO-action. Note that the state exposed after a
reduction can never call for a reduction: if it did so, that reduction would already have
been performed earlier.

It is convenient to represent the LR(0) automaton by means of table in which the
rows correspond to states and the columns to symbols. In the intersection we find what
to do with a given symbol in a given state. The LR(0) table for the automaton of Fig-
ure 9.21 is given in Figure 9.22. An entry like s3 means “shift the input symbol onto
the stack and go to state (1", which is often abbreviated to “shift to 3". The entry e
means that an error has been found: the corresponding symbol cannot legally appear in
that position. A blank entry will never even be consulted: either the state calls for a
reduction or the corresponding symbol will never at all appear in that position, regard-
less of the form of the input. In state 4, for instance, we will never meet an E: the E
would have originated from a previous reduction, but no reduction would do that in that
position. Since non-terminals are only put on the stack in legal places no empty entry
on anon-terminal will ever be consulted.

n - () # E T reduceby
1| s3 e s6 e e A 2
2 E->T
3 T->n
4 e s/ e e s5
5 S->E#
6 | s3 e s6 e e 9 2
7 | S3 e s6 e e 8
8 E->E-T
9 e s/ e s10 e
10 T->(E)

Figure 9.22 LR(0) table for the grammar of Figure 9.18

In practice the “reduce by” entries for the reducing states do not directly refer to
the rules to be used, but to routines that have built-in knowledge of these rules, that
know how many entries to unstack and that perform the semantic actions associated
with the recognition of the rule in question. Parts of these routines will be generated by
aparser generator.

The table in Figure 9.22 contains much empty space and is also quite repetitious.
As grammars get bigger, the parsing tables get larger and they contain progressively
more empty space and redundancy. Both can be exploited by data compression tech-
niques and it is not uncommon that atable can be reduced to 15% of its original size by
the appropriate compression technique. See, for instance, Al-Hussainin and Stone [LR
1986] and Dencker, Diirre and Heuft [Misc 1984].

The advantages of LR(0) over precedence and bounded-context are clear. Unlike

Sec. 9.4] LR methods 205

precedence, LR(0) immediately identifies the rule to be used for reduction, and unlike
bounded-context, LR(0) bases its conclusions on the entire left context rather than on
the last m symbols of it. In fact, LR(0) can be seen as a clever implementation of
BC(,0), i.e., bounded-context with unrestricted left context and zero right context.

9.4.2 LR(0) grammars

By now the reader may have the vague impression that something is wrong. On the
one hand we claim that there is no known method to make a linear-time parser for an
arbitrary grammar; on the other we have demonstrated above a method that seems to
work for an arbitrary grammar. A non-deterministic automaton as in Figure 9.19 can
certainly be constructed for any grammar, and the subset construction will certainly
turn it into a deterministic one, which will definitely not require more than linear time.
Voila, alinear-time parser.

The problem lies in the accepting states of the deterministic automaton. An
accepting state may still have an outgoing arrow, say on a symbol +, and if the next
symbol is indeed a +, the state calls for both a reduction and for a shift: the automaton
is not really deterministic after all. Or an accepting state may be an honest accepting
state but call for two different reductions. The first problem is caled a shift/reduce
conflict and the second a reduce/reduce conflict. Figure 9.23 shows examples (that
derive from adlightly different grammar than in Figure 9.18).

)

shift/reduce conflict reduce/reduce conflict
(on+) (always)

Figure 9.23 Two types of conflict

Note that there cannot be a shift/shift conflict. A shift/shift conflict would imply that
two different arrows leaving the same state would carry the same symbol. Thisis, how-
ever, prevented by the subset algorithm (which would have made into one the two
states the arrows point to).

A state that contains a conflict is called an inadequate state. A grammar that
leads to a deterministic LR(0) automaton with no inadequate states is called LR(0).
The grammar of Figure 9.18 is LR(0).

95 LR(1)

Our initial enthusiasm about the clever and efficient LR(0) parsing technique will soon
be damped considerably when we find out that very few grammars arein fact LR(0). If
we augment the grammar of Figure 9.18 by a single non-terminal S and replace
S >E# by S - >S# and S- >E to better isolate the end-marker, the grammar ceases to be
LR(0). The new grammar is given in Figure 9.24, the non-deterministic automaton in
Figure 9.25 and the deterministic one in Figure 9.26.

Apart from the split of state 5 in the old automaton into states 5 and 11, we
observe to our dismay that state 4 (marked [J) is now inadequate, exhibiting a

206 Deter ministic bottom-up parsing [Ch.9

1. S’S -> S #
2. S -> E

3. E -> E-T
4, E -> T

5. T -> n

6. T -> (E)

Figure 9.24 A non-LR(0) grammar for differences of numbers

Figure 9.25 Non-deterministic automaton for the grammar in Figure 9.24

shift/reduce conflict on -, and the grammar is not LR(0). We are the more annoyed
since this is arather stupid inadequacy: S- >E« can never occur in front of a- but only
in front of a#, so there is no real problem at al. If we had developed the parser by
hand, we could easily test in state 4 if the symbol ahead was a- or a# and act accord-
ingly (or else there was an error in the input). Since, however, practical parsers have
hundreds of states, such manua intervention is not acceptable and we have to find
algorithmic ways to look at the symbol ahead.

Taking our clue from the the explanation of the Earley pars;er,T we attach to each
dotted item a look-ahead symbol; we shall separate the look-ahead symbol from the
item by a space rather than enclose it between [] ’s, to avoid visual clutter. The con-
struction of a non-deterministic handle-finding automaton using this kind of items, and
the subsequent subset construction yield an LR(1) parser.

T Thisis histogally incorrect: LR(1) parsing was invented (Knuth [LR 1965]) before Earley
parsing (Earley [CF 1970]).

Sec. 9.5] LR(1) 207

Figure 9.26 Inadequate LR(0) automaton for the grammar in Figure 9.24

We shal now examine Figure 9.27, the non-deterministic automaton. Like the
items, the stations have to carry alook-ahead symbol too. Actually, a look-ahead sym-
bol in a station is more natural than that in an item. A station like «E# just means. hop-
ing to see an E followed by a#. The parser starts at station «S' , which has an invisible
look-ahead. From it we have e-moves to all production rules for S, of which there is
only one; thisyields the item S - >«S#, again with empty |look-ahead. This item neces-
Sitates the station «S#; we do not automatically construct all possible stations as we did
for the LR(0) automaton, but only those to which there are actual moves from else-
where in the automaton. The station «S# has# for alook-ahead and produces one item,
S >«E #. It is easy to see how the look-ahead propagates. The station «E#, arrived at
from the previous item, causes the item E- >«E- T #, which in its turn necessitates the
station «<E- , since now the automaton can be in the state “hoping to find an E followed
by a-". The rest of the automaton will hold no surprises.

The look-ahead derives either from the symbol following the non-terminal:

theitem E->«E-T leadsto station «E-
or from the previous look-ahead if the non-terminal is the last symbol in the item:
theitem S >«E # leadsto station <E#

There is a complication which does not occur in our example. When a non-terminal is
followed by another non-terminal:

P +QRX

there will be e-moves from this item to all stations «Q y, where for y we have to fill in
al terminas in FIRST(R). This is reasonable since all these and only these symbols

208 Deter ministic bottom-up parsing [Ch.9

T

Figure 9.27 Non-deterministic LR(1) automaton for the grammar in Figure 9.24

can follow Q in this particular item. It will be clear that thisis arich source of stations.

The next step is to run the subset algorithm on this automaton to obtain the deter-
ministic automaton; if the automaton has no inadequate states, the grammar was LR(1)
and we have obtained an LR(1) parser. The result is given in Figure 9.28. As was to
be expected, it contains many more states than the LR(0) automaton although the 60%
increase is very modest, due to the simplicity of the grammar. An increase of a factor
of 10 or more is more likely in practice. (Although Figure 9.28 was constructed by
hand, LR automata are normally created by a parser generator exclusively.)

We are glad but not really surprised to see that the problem of state 4 in Figure

Sec. 9.5] LR(1) 209

Figure 9.28 Deterministic LR(1) automaton for the grammar in Figure 9.24

9.26, which is now state [J in Figure 9.28, has been resolved: on # reduce using S- >E,

on - shift to [0 and on any other symbol give an error message.

It is again useful to represent the LR(1) automaton in a table